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Abstract

The solutions of hyperbolic systems of conservation laws are often discontinuous, and
must be understood in the weak sense. Imposing additional entropy conditions ensures
the uniqueness of solutions for scalar conservation laws, and provides the only non-linear
energy estimates available for generic hyperbolic systems. In this thesis, we discuss the
construction of high-order finite difference schemes on uniform Cartesian grids for the
compressible Euler equations, that are entropy stable i.e., the schemes satisfy a discrete
entropy condition. Additionally, the numerical flux is formulated such that the discrete
kinetic energy evolves in a manner consistent with the continuous level dynamics. Such
schemes are said to be kinetic energy preserving. The construction of high-order en-
tropy stable schemes requires the reconstruction of variables at the cell-interfaces using
a method that satisfies a sign-property. Only a handful of methods are known to satisfy
this property, and we propose a third-order sign-preserving WENO-type reconstruction,
which also satisfies other important monotonicity and stability properties.

Semi-discrete entropy conservative schemes can lose their ability to conserve entropy
once the set of ODEs is integrated in time using a suitable time-marching strategy. Based
on a Crank-Nicolson type discretization, we propose a fully-discrete entropy conservative
scheme for the Euler equations, which is also kinetic energy preserving.

The inclusion of viscous terms in the Euler equations leads to the Navier-Stokes equa-
tions. Restricting the entropy framework available for the Euler equations can symmetrize
the viscous fluxes of the Navier-Stokes equations. Based on this idea, we propose a suit-
able discretization of the viscous fluxes of multidimensional Navier-Stokes equations on
Cartesian grids, which leads to kinetic energy preserving and entropy stable finite dif-
ference schemes. The schemes are used for direct numerical simulations of the viscous
Taylor-Green vortex, to test their performance in approximating turbulent flows when
the mesh is under-resolved.

We also consider the vector-invariant formulation of the shallow water equations with
rotation due to Coriolis forces, which is a popular model in the meteorological community.
A high-order energy preserving finite difference scheme is proposed for this model, where
the (absolute) vorticity is solved for directly as an independent variable, with the aim to
accurately approximate several associated integral invariants.

Finally, finite volume methods can be easily implemented on unstructured grids, which
makes them useful for problems involving complex domains. Thus, we propose a vertex-
centered finite volume scheme for the Navier-Stokes equations on triangular grids, which
is entropy stable at the semi-discrete level. This is achieved by using a high-resolution
entropy stable inviscid flux and discretizing the symmetric form of the viscous fluxes
written in terms of the entropy variables. Wall boundary conditions are also constructed
to be entropy stable and are imposed in a weak manner.
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Notations

We use the following notations throughout this thesis.
We primarily consider systems of equations, with vectors and matrices denoted by bold

letters. For instance U ∈ Rm and D ∈ Rm×n, where R denotes the real line. Additionally,
R+ is used to denote the non-negative real axis. The components of vectors are denoted
by subscripts, for example x = (x1, x2, ..., xd) or superscripts. The latter is generally
used when subscripts are used to represent discretized solution values at mesh points, for
instance V (3)

i denotes the value of the third component of the vector V at the mesh point
i. We may also use the notations V x, V y to denote the components of a two-dimensional
vector V. Scalar product between vectors U,V ∈ Rm is written using angular brackets
as 〈U,V〉, while the induced norm is denoted by |U| :=

√
〈U,U〉. The dyadic/outer

product of X ∈ Rn,Y ∈ Rm is denoted by (X⊗Y)i,j := XiYj. In certain situations, we
consider quantities like F = (F1,F2, ...,Fd), where each Fi ∈ Rm is a state vector while
d corresponds to the space-dimension. Then, for a vector x ∈ Rd, we define the operator
F · x :=

∑d
i=1 Fixi to denote the product corresponding to the spatial dimension, with

F · x ∈ Rm.
For a function f(x, t) depending on space-time variables (x, t) ∈ Rd ×R+, the partial

derivatives are written as ∂tf, ∂x1f, etc. An equivalent notation ∂tf ≡ ft may also be used.
Additionally, for α = (α1, α2, ...αd) denoting a multi-index, we define xα := xα1

1 x
α2
2 ...x

αd
d

and ∂α := ∂α1
x1
∂α2
x2
...∂αdxd . The gradient of a scalar function f(x, t) is denoted as ∇xf , with

the subscript x omitted whenever it is clear which independent variable is being referred
to. The divergence of a vector U(x, t) ∈ Rd with respect to x is denoted by ∇·U. For a
scalar function η(U) depending on the vector U ∈ Rd, we define the gradient and Hessian
of η by the equivalent notations ηU ≡ ∂Uη ≡ η′ and ηUU ≡ ∂UUη ≡ η′′ respectively. For
vector-valued functions F(U), we denote the Jacobian as FU ≡ ∂UF ≡ F′.
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1. Introduction

Conservation is an important principle of physics, and forms the basis of mathematical
models in numerous fields of science and engineering. The notion of conservation states
that the rate of change of a conserved quantity U in a volume Ω depends only on the flux
F across the boundary ∂Ω. Some important examples of systems of conservation laws
include the shallow water equations, the Euler equations and the magnetohydrodynamics
(MHD) equations.

Solutions of non-linear hyperbolic conservation laws can develop discontinuities in fi-
nite time, even when the initial data is sufficiently smooth [25]. Thus, one must abandon
the notion of classical differentiable solutions and interpret the solutions in a weak (distri-
butional) sense. Whenever a classical solution exists, it coincides with the weak solution.
However, weak solutions of conservation laws are in general not unique, and must be sup-
plemented with additional entropy conditions to single out a physically relevant solution.
In the entropy framework, we assume the system of conservation laws is equipped with a
family of entropy-entropy flux pairs, which are functions of the conserved variable of the
system under consideration. If a solution satisfies the entropy condition for every such
pair, the solution is called an entropy solution. Scalar conservation laws are endowed with
a rich class of entropy-entropy flux pairs, and this fact was exploited by Kruzkov [70]
to prove the existence and uniqueness of entropy solutions for multi-dimensional scalar
conservation laws. However, the situation is quite different for systems of conservation
laws. Apart from some partial one-dimensional results [13, 10, 43], no well-posedness
results are available for general multi-dimensional systems. Nevertheless, the entropy
conditions provide the only generic non-linear estimates for systems of conservation laws
available at present. Thus, for a given system of conservation laws, we choose a suitable
entropy-entropy flux pair (if available) and prove the corresponding entropy estimates.

Numerical methods for hyperbolic systems of conservation laws have undergone ex-
tensive development over the past few decades. In finite difference/volume methods, the
computational domain is divided into control volumes and a discrete version of the con-
servation law imposed on each control volume. In particular, (approximate) Riemann
solver based numerical flux functions, non-oscillatory reconstructions which are Total-
Variation-Diminishing (TVD), Essentially-Non-Oscillatory (ENO) or of Weighted ENO
(WENO) type, along with strong stability preserving Runge-Kutta methods, constitute
an attractive and widely used package for the robust approximation of systems of conser-
vation laws. An alternative is the use of Runge-Kutta Discontinuous Galerkin (DG) finite
element methods [20] together with limiters to obtain non-oscillatory approximation.

Although many rigorous convergence results for these methods (at least for their first
and second order versions) are known for scalar conservation laws (see [69, 68] and refer-
ences therein), very few rigorous results are available for schemes approximating systems

1



Chapter 1. Introduction

of conservation laws, particularly in several space dimensions. Since obtaining rigorous
convergence results of numerical approximation to entropy solutions seems out of reach
currently (see [34] for a discussion on this issue) the design of entropy stable schemes –
numerical schemes that satisfy a discrete form of the entropy inequality – is a reasonable
goal. Entropy stable schemes automatically satisfy an Lp estimate and provide the only
global stability estimates currently available for numerical methods for multi-dimensional
conservation laws.

An important class of entropy stable schemes for systems of conservation laws was
proposed by Tadmor in [116], which paved the way for obtaining high-order entropy
stable schemes. The construction is based on two ingredients – (i) construction of an en-
tropy conservative flux satisfying a discrete entropy equality, and (ii) addition of suitable
dissipation operators to satisfy a discrete entropy inequality. First-order entropy stable
schemes, in which the solution is assumed to be piecewise constant in the cells, have
been tested by Fjordholm et al. [125] for the shallow-water equations, and by Roe and
Ismail [58] for the Euler equations on Cartesian meshes. High order accurate schemes are
constructed by reconstructing the solution in each cell by a polynomial. Arbitrarily high-
order entropy conservative fluxes for Cartesian grids were developed in [71]. However,
the design of arbitrary-high order entropy stable schemes was only carried out recently
by Fjordholm et al. in [35]. These so-called TeCNO schemes judiciously combine high-
order entropy conservative fluxes with arbitrarily high-order numerical diffusion operators,
based on piecewise polynomial reconstruction. The reconstructions have to satisfy a sign
property at each interface to ensure entropy stability. This means that the jump in the
reconstructed values at every cell face must have the same sign as the jump in the corre-
sponding cell values. A second-order reconstruction with the minmod limiter satisfies the
sign-property. ENO reconstruction methods, which were first introduced in [54], are used
to construct high-order polynomial reconstructions by adaptively choosing the smoothest
stencil. It was shown in [36] that the standard ENO reconstruction procedure satisfies the
sign property. Recently, a third order sign-preserving reconstruction based on appropriate
limiting of quadratic polynomials, was proposed in [18]. To the best of our knowledge, no
other known reconstruction satisfies this crucial property.

WENO schemes [73, 62] were proposed as an improvement over ENO schemes. The
basic idea of WENO is to take a convex combination of lower order polynomials and obtain
an effective high-order approximation of the solution. The convex weights are chosen so
as to give the least weight to polynomials whose stencils contain discontinuities. In this
thesis, we propose a third-order sign-preserving WENO-type reconstruction procedure.
This WENO scheme, termed as SP-WENO, enjoys a few other important monotonicity
and stability properties. When used in the TeCNO framework, SP-WENO leads to a
third-order entropy stable scheme on uniform Cartesian grids.

The majority of this thesis focuses on a specific system of conservation laws, namely
the compressible Euler equations. These are formulated on the basis of the conservation
of mass, momentum and energy in fluid flows. The Euler equations describe an idealistic
model, where the effects of viscosity are ignored. The inclusion of viscous forces in the
balance of momentum and energy leads to the compressible Navier-Stokes equations,
which are hyperbolic-parabolic in nature. While a family of entropy-entropy flux pairs
are available for the Euler equations [52], a specific choice of entropy-entropy flux pair
symmetrizes the viscous flux Jacobians [57, 31], which leads to the formulation of suitable
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entropy estimates for the viscous flow.
Obtaining high-resolution numerical solvers for the Navier-Stokes equations is of great

practical importance, especially for large eddy simulations (LES). At the same time, it is
important to be able to control the numerical instabilities triggered by the existence of
discontinuities in the numerical solution or under-resolved flow features, where the balance
of advection and diffusion plays a delicate role. A popular approach of handling issues of
instability is by constructing discrete operators for the Navier-Stokes equations such that
they satisfy discrete non-linear entropy stability estimates, analogous to those existing
for continuous equations. The symmetric formulation of the viscous fluxes in terms of
the entropy variables, has been utilized to construct a finite-difference scheme for the
Navier-Stokes equation in [31], and time-discontinuous Galerkin finite-element methods
in [103]. An alternate approach of the Summation-by-Parts (SBP) framework has been
used to derive provably stable, polynomial-based spectral collocation element methods of
arbitrary order [15].

A faithful representation of kinetic energy dynamics is also of key importance for com-
pressible flows. Although a bound on the kinetic energy does not ensure a bound on
the numerical solution in a compressible flow, the correct evolution of kinetic energy is a
crucial requirement for the accurate simulation of turbulence [105, 78, 89]. A method to
construct finite difference/volume schemes for the Euler equations that ensures a consis-
tent evolution of kinetic energy at the discrete level, was proposed in [59]. Such schemes
are said to be kinetic energy preserving. Recently, a semi-discrete finite volume scheme
that is both kinetic energy preserving and entropy conservative was constructed for the
Euler equations [16], and is termed as the KEPEC flux. With a suitable discretization
of the viscous fluxes for the one-dimensional Navier-Stokes equations, the KEPEC flux
leads to a kinetic energy preserving and entropy stable semi-discrete scheme for the viscous
model.

The high-order TeCNO schemes are only available for Cartesian (structured) grids in
several space dimensions. However, many applications of interest, particularly in engineer-
ing, involve domains with complex geometry [27, 60] which can be more easily discretized
using unstructured grids. The construction of high resolution, entropy stables schemes
on unstructured grids is not as mature. In [74], a first-order finite volume scheme was
constructed in the framework of cell-centered schemes, where the solution is stored at the
center of the cells. It does not seem to be possible to extend this approach to high resolu-
tion while at the same time maintaining the sign property and the accuracy of the scheme.
Recently, an entropy stable space-time DG finite element scheme has been proposed on
unstructured meshes [56], with shock-capturing and streamline diffusion terms to handle
discontinuities. In this thesis, we propose a vertex-centered finite volume scheme where
the solution is stored at the vertices of the mesh, and a dual cell is constructed around
each vertex on which the conservation law is satisfied [132, 111, 2, 88, 76, 1]. The high
resolution scheme is constructed by using a reconstruction process to obtain the solution
values at the faces of the cells. In the literature, there are several approaches to perform
this reconstruction [126, 30, 21, 99, 11, 88, 109, 7, 130, 131, 65]. We use a simple approach
for reconstruction, (cf. chapter IV - section 5.1 of [45]), but this process is combined with
the structure of the dissipation operator so that the sign property can be satisfied. We
hence construct a semi-discrete, high resolution scheme which is entropy stable on general
triangulations.
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Chapter 1. Introduction

Another major hurdle in constructing numerical methods for compressible flows is
the prescription of boundary conditions for the initial boundary value problem. Most
existing approaches are based on linearizing the Navier-Stokes equation near the bound-
ary, followed by the energy method to derive suitable boundary conditions [50, 80, 55].
Nordström and Svärd [81] have used this idea to analyze the well-posedness of boundary
conditions for the linearized Navier-Stokes system in three dimensions on a general do-
main. Svärd and Mishra [113] have constructed a conservative finite difference scheme
using the SBP approach and simultaneous-approximation-term (SAT) penalty technique
for the Euler equations on bounded domains, which have been shown to satisfy an ap-
propriate boundary entropy inequality [29] numerically. Unfortunately, this methodology
cannot be extended to the Navier-Stokes equation, as the specific form of entropy function
used does not symmetrize the viscous fluxes. In [31], a normalized entropy function is used
to derive a global energy estimate, with boundary conditions prescribed to bound/dissi-
pate the total energy of the Navier-Stokes equations. However, it is not clear how one
can consistently choose the various constants introduced to describe the inflow/outflow
conditions. Recently, non-linear entropy-stable wall boundary conditions have been pro-
posed in [87] and tested in the framework of discontinuous spectral collocation operators.
The slip boundary condition for the Euler equations is imposed using a manufactured
boundary state, the boundary viscous heat flux requires the construction of a suitable
numerical boundary flux and the no-slip boundary condition is imposed using a standard
SAT approach.

In this thesis, a vertex-centered finite volume is proposed for the initial-boundary-
valued Navier-Stokes system in two dimensions. The inviscid flux is discretized at each
control interface using an entropy stable flux, while the viscous fluxes are evaluated on
triangles in terms of the entropy variables to preserve the symmetric structure of the
continuous system. The boundary conditions are weakly imposed by constructing suitable
inviscid boundary fluxes based on the numerical value at the boundary node and the given
boundary data.

The rest of the thesis is organized in the following manner:
Chapter 2 introduces the basic notations to describe hyperbolic systems of conser-

vation laws. The various solution frameworks for conservation laws are briefly described.
A few important examples of scalar conservation laws and systems of conservation laws
are discussed.

Chapter 3 discusses the equations describing compressible flows. First, the Euler
equations are introduced along with the appropriate entropy framework. Then, the viscous
and heat conduction terms of the Navier-Stokes equations are described, followed by
the extension of the entropy framework to symmetrize the viscous fluxes. Finally, the
initial-boundary-value problem is discussed for the Navier-Stokes equations and entropy
estimates are obtained for wall boundary conditions.

Chapter 4 describes the formulation of finite difference and finite volume schemes for
conservation laws. A few important first-order methods are discussed, followed by a brief
summary of reconstruction techniques and limiters used to obtain high-order schemes.

Chapter 5 describes the construction of semi-discrete finite difference schemes on
Cartesian meshes which are provably entropy stable. The sufficient conditions for con-
structing entropy conservative/stable schemes are briefly outlined. A few important nu-
merical fluxes for the Euler equations are highlighted and numerically compared. Multi-
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dimensional viscous flux approximations satisfying the SBP property are discussed, which
leads to kinetic energy preservation and entropy stability for the Navier-Stokes equations.

In Chapter 6, we discuss the construction of the new sign-preserving SP-WENO
scheme, and detail other crucial properties satisfied by it. The SP-WENO method is
tested for both scalar and systems of conservation laws in the TeCNO framework.

In Chapter 7, we take a small detour and consider the shallow water equations in the
vector-invariant form. A semi-discrete finite difference scheme is proposed for the model
which preserves the total energy of the system. We test the capabilities of the scheme in
preserving other invariants such as the total potential enstrophy.

Chapter 8 details the construction of a fully-discrete scheme for the one-dimensional
compressible flow equations, which is both kinetic energy preserving and entropy stable.

Chapter 9 describes the finite volume formulation for the Euler equations. The cell-
centered and vertex-centered approaches are compared from the point of view of local
truncation errors. A second-order entropy stable flux is proposed by reconstructing the
the solution at the cell-interfaces using the minmod limiter. The reconstruction procedure
requires nodal gradients of entropy variables. A method to compute gradients which are
exact for linear functions, is discussed.

In Chapter 10 the finite volume scheme introduced in Chapter 9 is extended to
incorporate the viscous fluxes. It is shown that the proposed SBP-type discretisation of
the viscous fluxes and the prescription of appropriate numerical boundary fluxes lead to
consistent discrete entropy estimates.
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2. Hyperbolic conservation laws

In this chapter, we give a brief overview of systems of conservation laws. We first introduce
the basic notations to describe the Cauchy problem for the generic system, followed by
various existing solution frameworks.

Let U : Rd × R+ 7→ Rm be a vector of conserved quantities. Then, the rate of change
of U in any volume Ω0 ∈ Rd depends on the flux through the boundary ∂Ω0. The relation
is given by the integral equation

d
dt

∫
Ω0

U(x, t)dx = −
∫
∂Ω0

d∑
i=1

fi(U(x, t))nidS, (2.1)

where fi are the Cartesian components of the (smooth) flux function and n = (n1, n2, ...nd)
is the unit outward normal at the boundary. When U is smooth enough, we can use the
divergence theorem in (2.1) to obtain the differential formulation

∂tU +
d∑
i=1

∂xifi(U) = 0, (x, t) ∈ Rd × R+. (2.2)

We assume that the flux function depends only on the conserved variables U, which
is indeed the case in most physical phenomena governed by hyperbolic conservation laws.

Definition 2.0.1. Let Ai(U) := f ′i(U) be the flux Jacobians. Then the system (2.2) is
said to be hyperbolic if, for any U ∈ Π ⊂ Rm and any n ∈ Rd, the matrix

A(U,n) =
d∑
i=1

Ai(U)ni,

has m real eigenvalues λ1(U) 6 ... 6 λm(U) and m linearly independent eigenvectors
r1(U), ..., rm(U). If, in addition, these eigenvalues are distinct, then the system is said to
be "strictly hyperbolic".

Usually Π corresponds to some admissible set dictated by constraints on U, such as the
positivity of certain quantities. Each pair (λi(U), ri(U)) corresponding to A(U,n) defines
a characteristic field call the λi-field. A λi-field is linearly degenerate if 〈λ′i(U), ri(U)〉 = 0
for all U ∈ Π, and genuinely nonlinear if 〈λ′i(U), ri(U〉 6= 0 for all U ∈ Π. In this
thesis, we will only consider hyperbolic conservation laws which have linearly degenerate
or genuinely nonlinear characteristic fields.

The Cauchy problem for the above system also requires the prescription of an initial
condition

U(x, 0) = U0(x), x ∈ Rd, (2.3)
where U0 : Rd 7→ Rm.
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Chapter 2. Hyperbolic conservation laws

2.1 Weak formulation

It is well known that due to the non-linearity of the flux function, hyperbolic systems of
conservation laws can develop discontinuities in finite time, even when the initial condition
is smooth [25]. Thus, we can no longer talk about classical solutions and must interpret
the solutions in a weak (distributional) sense.

Definition 2.1.1. A function U ∈ (L1
loc(Rd × R+))m is called a weak solution of the

Cauchy problem for (2.2) with U0 ∈ (L1
loc(Rd))m if∫ ∞

0

∫
Rd

(
〈U, ∂tφ〉+

d∑
i=1

〈fi(U), ∂xiφ〉
)

dt dx +

∫
Rd
〈U0(x),φ(x, 0)〉 dx = 0, (2.4)

for all φ ∈ (C∞0 (Rd × R+))m.

Equation (2.4) is formally obtained by integrating the inner product of (2.2) and
the test function φ over space and time, so that all derivatives are transferred to the
test function. The advantage of considering the weak formulation is that we can relax
the smoothness conditions on the solution. However, not every discontinuity is admis-
sible. Let Γ be a surface of discontinuity in the t − x-plane for the solution U, and
ñ = (nt, n1, ..., nd) 6= 0 be the normal vector to Γ. Let us denote by U+ and U− the limits
of U on either side of Γ

U±(x, t) = lim
ε↓0

U((x, t)± εñ).

Theorem 2.1.1 (Rankine-Hugoniot (RH) condition). The weak solution U of (2.2)
must satisfy the jump condition

(U+ −U−)nt +
d∑
i=1

(
fi(U+)− fi(U−)

)
ni = 0, (2.5)

across the surface of discontinuity Γ.

When d = 1, we assume that Γ is parametrized as (t, ξ(t)), in which case ñ = (−s, 1)
with s = dξ/dt being the speed of the discontinuity. The corresponding RH condition
reads as

s(U+ −U−) = f(U+)− f(U−). (2.6)

Clearly, every classical solution is a weak solution. However, weak solutions need not
be unique, and must be supplemented with additional entropy conditions to single out a
physically relevant solution.

2.2 Entropy conditions

Assume that the system (2.2) is equipped with a strictly convex function η : Rm 7→ R
and functions qi : Rm 7→ R such that

q′i(U) = η′(U)>f ′i(U) i = 1, 2, .., d. (2.7)
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2.2. Entropy conditions

The function η is known as an entropy function, while (q1, q2, ..., qd) is the entropy flux.
Additionally, V = η′(U) is called the (vector of) entropy variables. Taking the scalar
product of (2.2) with V results in the following additional conservation law

∂tη(U) +
d∑
i=1

∂xiqi(U) = 0, (2.8)

which is satisfied for smooth solutions. The entropy condition states that weak solutions
should satisfy the entropy inequality

∂tη(U) +
d∑
i=1

∂xiqi(U) 6 0, (2.9)

which is understood in the sense of distributions, i.e.,∫ ∞
0

∫
Rd

(
η(U)∂tφ+

d∑
i=1

qi(U)∂xiφ

)
dt dx +

∫
Rd
η
(
U0(x)

)
φ(x, 0) dx > 0, (2.10)

for all φ ∈ C∞0 (Rd × R+), with φ(x, t) > 0. The solution U is called an entropy solution
if it satisfies (2.10) for every convex entropy.

If η(U) is strictly convex, then there exists a one-to-one mapping between U and V,
thus allowing the change of variables U = U(V). The following theorem based on the
work of Godunov [47] and Mock [77] links the existence of convex entropy functions for
the system (2.2) with the symmetrization of the system under the change of variable. The
transformed system

∂VU∂tV +
d∑
i=1

∂Vfi∂xiV = 0,

is said to be symmetrized by the change of variable U = U(V), if the Jacobian ∂VU is
symmetric positive definite and ∂Vfi are symmetric.

Theorem 2.2.1. A necessary and sufficient condition for the hyperbolic system (2.2) to
possess a strictly convex entropy η is that there exists a change of variable U = U(V)
that symmetrizes (2.2).

For the case of scalar conservation laws (m=1), every convex function serves as an
entropy function. This idea was exploited by Kruzkov [70] to prove the existence and
uniqueness of entropy solutions in the class of functions of bounded variation. The exis-
tence result was proved by considering the solution U ε of the parabolic regularized problem

∂tU
ε +

d∑
i=1

∂xifi(U
ε) = ε∆U ε, (2.11)

for ε > 0, and then showing that the the sequence {U ε}ε converges to an entropy solution
U of the original conservation law as the coefficient ε goes to zero. The proof relies
heavily on local bounds on the total variation of the sequence {U ε}ε. An alternate proof
of existence of entropy solutions for scalar conservation laws can be obtained by relaxing
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Chapter 2. Hyperbolic conservation laws

the bounded variation conditions on the perturbed solutions {U ε}ε, and using the method
of compensated compactness by Murat and Tartar [79, 120].

For systems of conservation laws, the situation is quite different. Apart from some
partial results for one-dimensional systems [13, 10, 43], no well-posedness results are
available for general multi-dimensional systems. However, the entropy conditions do play
an important role in providing global stability estimates. Formally integrating (2.9) in
space and assuming suitable decay conditions on the entropy flux or periodic boundary
conditions, we get

d
dt

∫
Rd

η(U)dx 6 0 =⇒
∫
Rd

η(U(x, t))dx 6
∫
Rd

η(U0(x))dx. (2.12)

The above bound on total entropy along with the convexity of η gives rise to an a priori
estimate on the solution of (2.2) in suitable Lp spaces [25]. This is the only generic
non-linear estimate for systems of conservation laws available at present.

2.3 The Riemann problem

Since the solution of conservation laws can develop discontinuities in finite time, it be-
comes important to understand the structure of the solution after the appearance of a
discontinuity. With this in mind, we consider the following special type of Cauchy problem
for a one-dimensional system of hyperbolic conservation laws

∂tU + ∂xf(U) = 0,

U0(x) =

{
UL, if x < 0

UR, if x > 0
,

(2.13)

where UL and UR are constant states. The Cauchy problem of the type (2.13) is also
known as a Riemann problem, and is the simplest initial value problem that can be posed
for conservation laws. Note that the initial condition is discontinuous if UL 6= UR. We
assume that the system is hyperbolic, with the flux Jacobian A(U) = f ′(U) having
distinct eigenvalues λ1(U) < ... < λm(U). As shown in Figure 2.1, the solution to this
problem consists of m waves emanating from the origin, corresponding to each eigenvalue.
Furthermore, the solutions of (2.13) are self-similar [45]. In other words, the solutions
are of the form U(x, t) = W(x/t), and consist of m+ 1 constant states separated by the
m waves. These m+ 1 states are connected by the following waves:

• Shock wave: The λi-wave is a shock wave, if it corresponds to a genuinely nonlinear
field and connects two states U− and U+ through a single jump discontinuity. The
discontinuity moves with a speed Si given by the RH condition (2.6). Furthermore,
the (Lax) entropy condition holds, i.e.,

λi(U−) > Si > λi(U+),

which can be deduced from the entropy condition (2.9) for a convex flux. The
characteristic lines dx/dt = λi on both sides of the shock line dx/dt = Si run into
the shock wave. This is depicted in Figure 2.2(a).
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2.4. Entropy measure-valued solutions

t

x

UL UR

λ1

λ2 λm−1

λm

Figure 2.1: Solution structure for the Riemann problem of a system of conservation laws.

• Contact wave: The λi-wave is a contact wave, if it corresponds to a linearly degen-
erate field and connects two states U− and U+ through a single jump discontinuity.
As in the case of the shock wave, the discontinuity moves with a speed Si given by
the RH condition (2.6). It additionally satisfies the parallel characteristic condition

λi(U−) = Si = λi(U+).

In other words, the characteristic lines on either side of the contact line dx/dt = Si
run parallel to it. This is depicted in Figure 2.2(b).

• Rarefaction: The λi-wave corresponds to a rarefaction, if it connects two states
U− and U+ through a smooth transition in a genuinely nonlinear field. The char-
acteristic lines corresponding to a rarefaction diverge from each other, i.e.,

λi(U−) < λi(U+),

as is shown in Figure 2.2(c).

A more thorough discussion on various concepts associated with Riemann solutions
for systems of conservation laws can be found in [45].

2.4 Entropy measure-valued solutions

As discussed towards the end of Section 2.2, there are no well-posedness results available
for general multi-dimensional systems of conservation laws. The non-uniqueness of en-
tropy solutions for some specific multi-dimensional systems has recently been shown in
[19]. This suggests that the classical notion of entropy solutions may not be adequate to
establish the existence and uniqueness of solutions for a general system. Thus, one needs
to consider a more general notion of solutions for (2.2). One such suitable framework is
based on the notion of measure-valued solutions formulated by DiPerna [28]. Consider
the mapping

ν : Rd × R+ 7→ P(Rm),
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t

x

U−

U+

Si

(a) Shock wave

t

x

U−

U+

Si

(b) Contact wave

t

x

U−

U+

(c) Rarefaction

Figure 2.2: Characteristic lines for simple waves forming the solution to a Riemann problem

where P(Rm) is the space of probability measures over Rm. Thus, ν assigns a probability
measure νx,t for each (x, t). The function ν is called a Young measure. Furthermore, a
Young measure can be composed with a continuous function g : Rm 7→ R by defining

〈νx,t, g〉M :=

∫
Rm

g(ζ)dνx,t(ζ),

which is precisely the expectation of g with respect to the measure νx,t. Note that the
operator 〈., .〉M is different from the scalar product operator 〈., .〉, and that 〈νx,t, g〉M is a
real-valued function of space-time. Additionally, if g : Rm 7→ Rm is vector of continuous
functions, then 〈νx,t,g〉M will be a vector of real-valued function formed by composing ν
with each component of g.

Every measurable function U : Rd×R+ 7→ Rm gives rise to a Young measure given by

νx,t := δU(x,t),

where δζ is the Dirac measure centered at ζ ∈ Rm. Such Young measures are termed as
atomic. For an atomic Young measure, we have

〈νx,t, g〉M = g(U(x, t)).

Based on the above notations, we consider the following generalization of the Cauchy
problem corresponding to (2.2)

∂t 〈νx,t, id〉M +
m∑
i=1

∂xi 〈νx,t, fi〉M = 0, (x, t) ∈ Rd × R+,

νx,0 = σx, x ∈ Rd,

(2.14)

where id(ζ) = ζ is the identity function and σ is the Young measure denoting the measure-
valued initial condition.
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2.5. Examples

Definition 2.4.1. A Young measure ν is called a measure-valued solution of the system
(2.14) if it satisfies∫ ∞

0

∫
Rd

(〈
〈νx,t, id〉M , ∂tφ

〉
+

d∑
i=1

〈
〈νx,t, fi〉M , ∂xiφ

〉)
dt dx

+

∫
Rd
〈〈σx, id〉M ,φ(x, 0)〉 dx = 0,

(2.15)

for all φ ∈ (C∞0 (Rd × R+))m.

In a similar manner, one can extend (2.10) to define ν to be an entropy measure-valued
(EMV) solution of (2.14) for a given entropy-entropy flux pair, if it satisfies∫ ∞

0

∫
Rd

(
〈νx,t, η〉M ∂tφ+

d∑
i=1

〈νx,t,qi〉M ∂xiφ

)
dt dx

+

∫
Rd
〈σx, η〉M φ(x, 0) dx > 0,

(2.16)

for all φ ∈ C∞0 (Rd × R+), with φ(x, t) > 0.
DiPerna [28] has shown that if U(x, t) is the entropy solution for a scalar conservation

law corresponding to the initial condition U0(x), then the EMV solution corresponding to
the initial Dirac measure δU0(x) coincides with δU(x,t). This result has been generalized to
non-atomic initial measures for scalar conservation laws in [34], where it has been shown
that an EMV solution exists for a bounded initial measure σx, i.e., there exists a compact
set K ∈ Rm such that supp(σx) ∈ K for all x ∈ Rd. Although EMV solutions need not
be unique for non-atomic initial measures, it is possible to show that by restricting to a
relevant class of atomic initial data, the EMV solutions for scalar conservation laws are
stable [34]. For a system of conservation laws, if a classical solution is known to exist for
a given initial condition, then a weak-strong uniqueness can be proved for EMV solutions
under certain boundedness assumptions. Extensive numerical experiments in [34] indicate
the stability of EMV solutions for selected systems of conservation laws.

2.5 Examples

We now briefly describe a few important examples of conservation laws.

2.5.1 Linear advection equation

The linear advection equation is the simplest example of conservation laws, and is given
by

∂tU +
d∑
i=1

ai∂xiU = 0, (2.17)

where U is a scalar conserved variable and a = (a1, ..., ad) determines the constant ad-
vection velocity. Given the initial condition U(x, 0) = U0(x) for the Cauchy problem, the
exact solution has the expression

U(x, t) = U0(x− at),
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Chapter 2. Hyperbolic conservation laws

which corresponds to advection of the initial condition by the velocity a. As mentioned
earlier, any convex function can serve as an entropy function for scalar equations. In
particular, we can choose the quadratic function η(U) = U2/2. The corresponding entropy
flux functions for the linear advection equation can be obtained using the compatibility
relation (2.7) as

qi(U) =

∫
U

η′(w)f ′i(w)dw =
aiU

2

2
. (2.18)

Since the flux is a linear function, discontinuities in the solution can only be connected
by contact waves.

For the linear advection equation, the weak solution is already unique and in principle
does not require additional entropy conditions. Even with discontinuous initial conditions,
the total entropy is preserved by assuming the initial condition has suitable decay con-
ditions as |x| → ∞. With the choice of the quadratic entropy function, we can conclude
that the L2 norm of the solution is preserved in time.

2.5.2 Burgers’ equation

The Burgers’ equation is the simplest example of a non-linear scalar conservation law,
and is given by

∂tU + ∂x

(
U2

2

)
= 0. (2.19)

The eigenvalue corresponding to the scalar flux Jacobian is λ = U . The λ-field is gen-
uinely nonlinear, and thus, discontinuous solution states are connected by either shocks
or rarefaction waves. Choosing the quadratic entropy function leads to the entropy flux
function

q(U) =
U3

3
. (2.20)

Unlike the linear advection equation, the appearance of a shock dissipates the total en-
tropy.

2.5.3 Wave equation

The wave equation in one-dimension is given by

∂ttu− c2∂xxu = 0, (2.21)

with the initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

where c is a constant speed of wave propagation. By introducing new variables v = ∂xu
and w = ∂tu, (2.21) can be re-formulated as the following linear system of conservation
laws (

v
w

)
t

+

(
−w
−c2v

)
x

= 0,
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2.5. Examples

with initial conditions
(
v(x, 0), w(x, 0)

)
=
(
u′0(x), u1(x)

)
. Furthermore, the flux Jaco-

bian

A =

(
0 −1
−c2 0

)
,

has eigenvalues and eigenvectors

λ1 = c, λ2 = −c, r1 =

(
1
−c

)
, r2 =

(
1
c

)
,

and is thus hyperbolic provided c 6= 0.
The wave equation is a specific case of the following more general framework of linear

symmetric systems

∂tU +
d∑
i=1

Ai∂xiU = 0, (2.22)

where Ai are constant matrices. Assume there exists a positive definite matrix B such
that BAi are symmetric. Then, (2.22) is equipped with the following entropy-entropy
flux functions

η(U) =
1

2
〈U,BU〉 , qi(U) =

1

2
〈U,BAiU〉 , i = 1, ..., d

with entropy variables V = BU. For the wave equation (2.21), d = 1 and B is the identity
operator.

2.5.4 Shallow water equations

The shallow water equations are an example of a non-linear system of conservation laws,
that describe the motion in a thin layer of fluid with a constant density, bounded below
by a flat bottom topography, and from above by a free surface. This system is given by
the equations  h

hu1

hu2


t

+

 hu1

hu2
1 + 1

2
gh2

hu1u2


x

+

 hu2

hu1u2

hu2
2 + 1

2
gh2


y

= 0, (2.23)

where h is the fluid height, u = (u1, u2) is the horizontal velocity and g is the gravity
constant. Referring to Definition 2.0.1, we have for n ∈ R2

A(U,n) =

 0 n1 n2

−u1un + n1gh n1u1 + un n2u1

−u2un + n2gh n1u2 n2u2 + un

 , un = u · n,

with the eigenvalues and eigenvectors of A(U,n) given by

λ1 = un−c, λ2 = un, λ3 = un+c, r1 =

 1
u1 − n1c
u2 − n2c

 , r2 =

 0
−n2

n1

 , r3 =

 1
u1 + n1c
u2 + n2c
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Chapter 2. Hyperbolic conservation laws

where c =
√
gh is the speed of gravity waves. Assuming h > 0, the matrix A(U,n)

has real distinct eigenvalues, and thus ensures the two-dimensional system shallow water
equations is strictly hyperbolic.

Furthermore, the system (2.23) is equipped with the following entropy-entropy flux
functions

η(U) =
h

2
(u2

1 + u2
2) +

1

2
gh2, qi(U) =

h

2

2∑
j=1

u2
jui + guih

2, i = 1, 2

where the entropy function is nothing but the energy of the flow.
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3. Compressible flows

In this chapter, we introduce the equations that describe the motion of compressible flows.
We begin by considering the Euler equations which describe the flow mechanics in the
absence of viscous forces. The Euler equations are formulated based on fundamental prin-
ciples of conservation of mass, momentum and energy, and can be shown to be hyperbolic
in nature. We discuss the entropy framework for this system, which will play a crucial
role in constructing suitable numerical schemes.

3.1 Euler equations

The three dimensional Euler equations are given by

∂tρ+ ∂x1(ρu1) + ∂x2(ρu2) + ∂x3(ρu3) = 0,

∂t(ρu1) + ∂x1(ρu2
1 + p) + ∂x2(ρu1u2) + ∂x3(ρu1u3) = 0,

∂t(ρu2) + ∂x1(ρu2u1) + ∂x2(ρu2
2 + p) + ∂x3(ρu2u3) = 0,

∂t(ρu3) + ∂x1(ρu3u1) + ∂x2(ρu3u2) + ∂x3(ρu2
3 + p) = 0,

∂tE + ∂x1

(
u1(E + p)

)
+ ∂x2

(
u2(E + p)

)
+ ∂x3

(
u3(E + p)

)
= 0,

(3.1)

where ρ, u = (u1, u2, u3)> and p denote the fluid density, velocity and pressure, respec-
tively. The quantity E is the total energy per unit volume

E = ρ

(
1

2
|u|2 + e

)
, (3.2)

where e is the specific internal energy given by a caloric equation of state, e = e(ρ, p).
For the remainder of this thesis, we take the equation of state to be that of the ideal gas,
given by

e =
p

(γ − 1)ρ
, (3.3)

with γ = cp/cv denoting the ratio of specific heats.
The first equation of (3.1) describes the conservation of mass, the next three describe

the conservation of the three components of momentum, and the final equation describes
the conservation of energy. The Euler equations can be re-formulated as the following
system of conservation laws

∂tU +
3∑
i=1

∂xifi(U) = 0,
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Chapter 3. Compressible flows

where the vector of conserved variables U and the flux components f1, f2, f3 are given by

U =


ρ
ρu1

ρu2

ρu3

E

 , fi(U) =


ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3
ui(E + p)

 , δij =

{
1 if i=j
0 otherwise

, i = 1, 2, 3. (3.4)

3.1.1 Hyperbolicity

Define the flux Jacobian Ai(U) = fi(U) with i = 1, 2, 3 and consider the matrix

A(U,n) = A1n1 + A2n2 + A2n3, n = (n1, n2, n3) ∈ R3. (3.5)

The eigenvalue and corresponding matrix of eigenvectors for A(U,n) are

λ1 = un − a, λ2 = λ3 = λ4 = un, λ5 = un + a

R(U,n) =
(
r1 r2 r3 r4 r5

)

=


1 1 0 0 1

u1 − an1 u1 n2 −n3 u1 + an1

u2 − an2 u2 −n1 0 u2 + an2

u3 − an3 u3 0 n1 u3 + an3

H − aun 1
2
|u|2 u1n2 − u2n1 u3n1 − u1n3 H + aun


(3.6)

where un = u ·n, a =
√
γp/ρ is the speed of sound in air and H = (γ− 1)−1a2 + |u|2/2 is

the specific enthalpy. Assuming the positivity of density and pressure, the eigenvalues are
real and the corresponding eigenvectors are linearly-independent, thus making the system
hyperbolic.

Additionally, we define the Mach number of the flow asM = |u|/a. The Mach number
is used to describe various flow regimes: the flow is subsonic for M < 1, supersonic for
M > 1 and transonic if the flow has both supersonic and subsonic regions.

3.1.2 Entropy framework

Harten [52] has shown that the Euler equations are equipped with a family of entropy-
entropy flux functions of the form

η(U) = −ρh(s)

γ − 1
, qi(U) = −ρuih(s)

γ − 1
, i = 1, 2, 3 (3.7)

with an additional constraint h′′/h′ < γ−1 to enforce strict convexity of η. Here the
quantity s = ln (p) − γ ln (ρ) is obtained from the thermodynamic specific entropy s̃ by
s = (s̃ − s̃0)/cv where s̃0 is an arbitrary constant (see [44] for a detailed derivation). A
convenient choice which we adhere to for the rest of this dissertation is

η(U) = − ρs

γ − 1
, qi(U) = − ρuis

γ − 1
, i = 1, 2, 3 (3.8)
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3.2. Navier-Stokes equations

where we have made the affine choice h(s) = s. The corresponding entropy variables V
are given by

V =


V (1)

V (2)

V (3)

V (4)

V (5)

 =


γ−s
γ−1
− β|u|2

2βu1

2βu2

2βu3

−2β

 , β =
ρ

2p
. (3.9)

3.2 Navier-Stokes equations

The Euler equations are a good approximation for several flow scenarios. However, viscous
effects become important for studying flows with boundary layers near solid walls and the
behaviour of fluids in turbulent regimes. If viscous effects are included in the balance
of momentum and energy, it leads to the formulation of the more general compressible
Navier-Stokes equations, which are hyperbolic-parabolic in nature. The three-dimensional
Navier-Stokes equations can be written as

∂tU +
3∑
i=1

∂xifi(U) =
3∑
i=1

∂xigi(U,∇U), (3.10)

where the vector of variables U and the inviscid fluxes f1, f2 and f3 are given by (3.4).
The viscous fluxes g1,g2 and g3 can be expressed as

gi(U) =


0
τi1
τi2
τi3

u1τi1 + u2τi2 + u3τi3 −Qi

 , i = 1, 2, 3 (3.11)

with the shear stress tensor τ and the heat flux Q given by Newtonian and Fourier
constitutive relations respectively,

τ = µ(∇u + (∇u)>))− 2

3
µ(∇·u)I, Q = (Q1, Q2, Q3) = −κ∇θ.

Here, I is the unit tensor, µ is the coefficient of dynamic viscosity and κ is the coefficient of
heat conductance. Furthermore, θ denotes the temperature of the flow, which is obtained
using the ideal gas law given by p = ρRθ, where R is the gas constant with R = cp − cv.
Note that the shear stress tensor is symmetric. The coefficient of heat conductance can
be determined from µ using the relation

κ =
µcp
Pr

, (3.12)

where Pr is the Prandtl number, which is assumed to be constant for a given gas. The
Euler equations can be recovered from (3.10) by setting µ = 0.

An important non-dimensional number defined for viscous flows is the Reynolds num-
ber, which is given by

Re =
LU

ν
,
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Chapter 3. Compressible flows

where L and U are the characteristic length and velocity scales of the flow respectively,
while ν = µ/ρ0 is the coefficient of kinematic viscosity. The Reynolds number can be seen
as measure of the ratio of inertial forces to viscous forces of the flow. For low Reynolds
numbers, the viscous forces dominate and the flow is laminar. As Reynolds number is
increased, the flow transitions from a laminar regime into a turbulent regime, which is
associated with the formation of eddies at several length scales [39].

We introduce the notations

F(U,n) =
d∑
i=1

fi(U)ni, G(U,∇U,n) =
d∑
i=1

gi(U,∇U)ni, q(U,n) =
d∑
i=1

qi(U)ni,

(3.13)
for d = 1, 2, 3, which will be useful to represent the flux in the direction n ∈ Rd. In most
cases, n will correspond to the outward normal to a domain boundary. The viscous fluxes
may at times be written in terms of the entropy variables, in which case we have the
alternate notation

G(V,∇V,n) =
d∑
i=1

gi(V,∇V)ni. (3.14)

3.2.1 Symmetrization of viscous fluxes

The system of Euler equations is symmetrized when formulated in terms of V, as was
discussed in Section 2.2. Hughes et al. [57] have shown that the entropy pairs of the
form (3.7) also symmetrize the viscous fluxes if h(s) is restricted to be at most affine. In
particular, we can work with the choice (3.8). To see this, we reformulate the viscous
fluxes (3.11) in terms of the entropy variable and its first order spatial derivatives

gi(V,∇V) =
3∑
j=1

Kij(V)∂xjV, i = 1, 2, 3. (3.15)

It can be shown that the matrix

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 ∈ R15×15,

is symmetric and positive semi-definite [31]. This is what is meant by the symmetrization
of the viscous fluxes. The explicit expression for K is given in Appendix A.

3.3 Evolution of kinetic energy

The kinetic energy is an important quantity in fluid flows, especially in turbulent regimes
where kinetic energy is transferred from large scales to small scales, and finally dissipated
by viscous forces. Let us consider a general formulation for the dimension d, where
d = 1, 2, 3. The kinetic energy density K = ρ|u|2/2 for compressible flow evolves according
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3.4. Initial boundary value problem

to the equation

∂tK = −1

2
|u|2∂tρ+ 〈u, ∂t(ρu)〉

=
1

2
|u|2

d∑
j=1

∂xj(ρuj)−
d∑
i=1

d∑
j=1

ui∂xj(ρuiuj + pδij − τij)

=
d∑
j=1

[
∂xj

(
uj

(
p− ρ1

2
|u|2
)

+
d∑
i=1

uiτij

)]
+ p∇·u−

d∑
i=1

d∑
j=1

τij∂xjui.

(3.16)

Splitting ∂xjui into its symmetric and anti-symmetric part i.e., ∂xjui = Sij + Aij, and
using the fact that

τij = µ(∂xjui + ∂xiuj)−
2

3
µδij∇·u

we get
d∑
i=1

d∑
j=1

τij∂xjui =
d∑
i=1

d∑
j=1

τijSij =
d∑
i=1

d∑
j=1

1

2
µ
(
∂xjui + ∂xiuj

)2 − 2

3
µ (∇·u)2 . (3.17)

Integrating (3.16) over a domain Ω ∈ Rd and assuming periodic or no-flow boundary
conditions leads to the following equation of evolution of total kinetic energy

d
dt

∫
Ω

Kdx =

∫
Ω

p∇·udx−
∫
Ω

[
d∑
i=1

d∑
j=1

1

2
µ
(
∂xjui + ∂xiuj

)2 − 2

3
µ (∇·u)2

]
dx. (3.18)

The first term on the right of (3.18) describes the rate at which work is done by pressure
forces, and is present only for compressible flows, i.e., if ∇·u 6= 0. The second term
represents the destruction of kinetic energy by viscous forces, which is converted to internal
energy. Note that (3.17) can be rewritten as
d∑
i=1

d∑
j=1

τij∂xjui =
d∑
i=1

d∑
j=1

1

2
µ

[
∂xjui + ∂xiuj −

2

3
δijw(d)∇·u

]2

> 0, w(d) =
3 +
√

9− 3d

d
.

Thus, the viscous forces clearly dissipate the kinetic energy. For the one-dimensional
Navier-Stokes equations, (3.18) reduces to the following simpler equation

d
dt

∫
Ω

Kdx =

∫
Ω

p∂xudx−
∫
Ω

4

3
µ(∂xu)2dx. (3.19)

3.4 Initial boundary value problem

Thus far, we have been considering the Cauchy problem. We can also consider the initial
boundary value problem (IBVP) for the Navier-Stokes equations. Let Ω ∈ R3 be a domain
with boundary given by ∂Ω. Then the IBVP on this domain can be written as

∂tU +
3∑
i=1

∂xifi(U) =
3∑
i=1

∂xigi(V,∇V) (x, t) ∈ Ω× R+,

U(x, 0) = U0(x) x ∈ Ω,

+ Boundary Conditions,

(3.20)

21



Chapter 3. Compressible flows

where the viscous flux is written in terms of the entropy variables. Taking the scalar
product of the Navier-Stokes equations with V and integrating over Ω gives us

d
dt

∫
Ω

ηdx =−
∫
∂Ω

q(U,n)dS −
∫
Ω

3∑
i=1

〈∂xiV,gi〉 dx +

∫
∂Ω

〈V,G(V,∇V,n)〉 dS, (3.21)

where n is the outward normal at the domain boundary. We introduce the notation

∇̃V =

∂x1V
∂x2V
∂x3V

 ∈ R15,

which we distinguish from the usual gradient notation ∇V =
(
∂x1V, ∂x2V, ∂x3V

)
∈

R5×3. Using (3.15) and the fact that K is symmetric and positive semi-definite, we have

−
3∑
i=1

〈∂xiV,gi〉 = −
〈
K∇̃V, ∇̃V

〉
6 0.

Thus, (3.21) results in the following entropy relation for the Navier-Stokes equations,

d
dt

∫
Ω

ηdx 6 −
∫
∂Ω

q(U,n)dS +

∫
∂Ω

〈V,G(V,∇V,n)〉 dS. (3.22)

The relation (3.22) shows that if there is no net entropy flux through the boundaries, then
the total entropy is non-increasing in time.

3.4.1 Boundary conditions and entropy stability

We focus on solid wall boundary conditions for the Navier-Stokes equations, i.e., u
∣∣∣
∂Ω

= 0,
which leads to the entropy relation

d
dt

∫
Ω

ηdx 6
∫
∂Ω

V>G(V,∇V,n)dS = −
∫
∂Ω

κ

Rθ
∂nθdS, (3.23)

where ∂nθ denotes the directional derivative of the temperature in the direction of the
outward normal. In addition, we must either specify the heat flux or the temperature at
the boundary. If we assume the heat flux is prescribed

Q·n
∣∣∣
∂Ω

= −κ∂nθ
∣∣∣
∂Ω

= hb,

we obtain the estimate
d
dt

∫
Ω

ηdx 6
∫
∂Ω

hb

Rθ
dS.

The inviscid and viscous boundary fluxes take the form

F(U,n) = (0, pn, 0)> , G(V,∇V,n) =
(
0, τ ·n, −hb

)>
, (3.24)
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3.4. Initial boundary value problem

respectively.
If on the other hand we have an isothermal solid wall with θ

∣∣∣
∂Ω

= θb prescribed, then
the following estimate holds

d
dt

∫
Ω

ηdx 6 −
∫
∂Ω

κ

Rθb
∂nθdS, (3.25)

which can also be written in terms of the entropy variable as

d
dt

∫
Ω

ηdx 6
∫
∂Ω

κ

RV b,(5)
∂nV

(5)dS, (3.26)

where V b,(5) = −2β = −1/Rθb.
If there is an external forcing term active at the boundary, we cannot expect to obtain

an "entropy stability" estimate in general. However, if the forcing term enforces adiabatic
solid wall conditions i.e., hb = 0, or extracts heat from the system i.e., hb < 0, then we
can obtain the entropy stability estimate

d
dt

∫
Ω

ηdx 6 0. (3.27)

Isothermal solid wall conditions lead to the estimate (3.25) (or (3.26)), which is only
considered to be an entropy estimate and not a stability relation as it may not be possible
to a priori bound the heat flux with the prescribed boundary data.
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4. Finite difference and finite volume
schemes for conservation laws

In this chapter we describe the formulation of finite difference and finite volume schemes
for systems of conservation laws. For these methods, the computational domain is dis-
cretized using non-overlapping control volume, following which a discrete version of the
conservation law is posed on each control volume. Finite difference methods approx-
imate the differential form of the conservation law and are more suited for Cartesian
grids. High-order finite difference schemes are obtained by a suitable polynomial recon-
struction of variables in each cell using the point values of the variables. On the other
hand, finite volume methods are obtained by integrating the conservation law over a con-
trol volume, and evolving cell-averages of the solution. For two and higher-dimensional
problems (d > 1), the integral of the flux on the boundary of the control volumes also
needs to be approximated using suitable quadratures. High-order finite volume methods
are obtained by using a high-order quadrature formula, followed by the reconstruction of
solution values at the boundary quadrature points using neighbouring cell-average values.

4.1 Finite volume scheme

We present details for finite volume schemes approximating one-dimensional conservation
laws on Cartesian grids. Finite volume schemes on two-dimensional unstructured grids
will be discussed in Chapter 9. Consider the Cauchy problem for a one-dimensional system
of conservation laws

∂tU + ∂xf(U) = 0, (x, t) ∈ R× R+,

U(x, 0) = U0(x), x ∈ R.
(4.1)

We discretize the domain using disjoint intervals Ii = [xi− 1
2
, xi+ 1

2
) of uniform length

∆x = xi+ 1
2
− xi− 1

2
. We use the notation xi to denote the center of the interval Ii.

4.1.1 Fully discrete scheme

Consider the time interval [tn, tn+1) with the time-step ∆t = tn+1 − tn. We integrate the
conservation law over the space-time control volume Ii × [tn, tn+1) to get

x
i+ 1

2∫
x
i− 1

2

(
U(x, tn+1)−U(x, tn)

)
dx =

tn+1∫
tn

(
f(U(xi+ 1

2
, t))− f(U(xi− 1

2
, t))
)
dt, (4.2)
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Chapter 4. Finite difference and finite volume schemes for conservation laws

which is exact in both space and time. We use the notation Un
i to denote the space

average of the conserved variables in the cell Ii at the time level tn

Un
i =

1

∆x

x
i+ 1

2∫
x
i− 1

2

U(x, tn)dx.

Time integral of the flux along the interface xi+ 1
2
is approximated by ∆tFn

i+ 1
2

, which gives
the fully discrete finite volume scheme

Un+1
i = Un

i −
∆t

∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
. (4.3)

The numerical flux is generally chosen to be a two-point flux of the form Fn
i+ 1

2

:=

F(Un
i ,U

n
i+1). Note that the scheme (4.3) describes the evolution of cell-average values of

U. We are interested in numerical methods which satisfy a discrete version of (2.9).

Definition 4.1.1. The fully-discrete scheme (4.3) is said to entropy stable if it satisfies
a discrete cell entropy estimate of the form

η(Un+1
i ) 6 η(Un

i )− ∆t

∆x

(
qn
i+ 1

2
− qn

i− 1
2

)
, (4.4)

where qn
i+ 1

2

is a consistent numerical entropy flux.

For scalar conservation laws in one dimension, monotone schemes have been shown to
be total variation diminishing (TVD) and satisfy the entropy condition [24]. The total
variation of a function measures the amount of oscillations in the solution. It can be
evaluated at the discrete level for a function v(x) as

TV (v) =
∑
i

|vi − vi−1|.

For scalar conservation laws, the TVD property is essential to prove the convergence of
numerical schemes [44]. Additionally, E-schemes have been designed in [83] to preserve
a discrete version of the entropy condition. However, E-schemes – and in particular
monotone schemes – are at most first-order accurate.

4.1.2 Godunov’s exact Riemann solver

Godunov [46] proposed a method for constructing finite volume schemes which are entropy
stable [44, 72]. At each cell interface xi+ 1

2
, a local Riemann problem is solved exactly with

the left and right initial states given by the cell average values Un
i and Un

i+1 respectively.
The solution is evolved for a time-step ∆t to obtain U(x, tn+1), which is then averaged
in each cell to obtain the new cell-average values Un+1

i at the time level tn+1. For the
Godunov scheme, the flux integrals on the right of (4.3) can be evaluated exactly by using
the solution to the local Riemann problem centered at the interface xi+ 1

2
. Recall from

Section 2.3 that the solution to the Riemann problem has a self-similar structure, which
is constant along the lines (x − xi+ 1

2
)/(t − tn) = c for tn < t < tn+1, where c is some
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4.1. Finite volume scheme

constant. In particular, the solution is constant along the line x = xi+ 1
2
, which we denote

as Ũi+ 1
2
. This leads to the exact expression

1

∆t

tn+1∫
tn

f(U(xi+ 1
2
, t))dt = f(Ũi+ 1

2
),

with the numerical flux chosen as Fn
i+ 1

2

= f(Ũi+ 1
2
).

The time-step ∆t must be small enough so that the Riemann solution at xi+ 1
2
is

not disturbed by the neighbouring local Riemann solutions. This can be ensured if the
distance travelled by the fastest wave of the Riemann solution in time ∆t is less than ∆x,
i.e,

CFL = max
j

(λj(U
n
i ))

∆t

∆x
< 1. (4.5)

A condition of the type (4.5) is known as the CFL condition for the numerical method,
named after Courant, Friedrich and Lewy [23]. Hyperbolic conservations laws have a
finite speed of propagation, and thus the solution at a point (x, t) has a finite domain of
dependence obtained by back-tracing the characteristic lines passing through this point.
The CFL condition ensures that the numerical domain of dependence contains the true
domain of dependence. This is a crucial (necessary) condition used to prove the stability
of numerical schemes. Rigorous estimates of CFL conditions are generally proved for
the linearized problem, which act as guiding principles to choose the time-step for the
non-linear problem.

Remark 4.1.1. The Godunov scheme can be shown to be monotone [44], and is thus
entropy stable and first-order accurate.

4.1.3 Roe’s approximate Riemann solver

The Godunov method requires local Riemann problem to be solved exactly. This can
be computationally expensive to do for a non-linear problem. We can instead consider
a linear approximation to the problem at each interface, while ensuring that some of
the essential hyperbolic properties of the non-linear problem are still retained. The linear
system of conservation laws is much simpler to solve. Such methods are called approximate
Riemann solvers. Amongst these, the approximate Riemann solver of Roe [95] is quite
popular.

The basis of Roe’s approach is to replace the flux Jacobian matrix f ′(U) = A(U) at
each cell-interface by the constant matrix Ã = Ã(UL,UR), where UL and UR are respec-
tively the left and right solution states at the interface. The corresponding approximate
linear Riemann problems are then solved exactly. The Roe Jacobian matrix Ã needs to
satisfy the following conditions

1. Ã should have real eigenvalues and a complete set of linearly independent right
eigenvectors. This ensures the problem is still hyperbolic.

2. Ã should be consistent with the exact Jacobian matrix, i.e., Ã(U,U) = A(U).
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3. Conservation should be ensured across discontinuities, i.e., F(UR) − F(UL) =
Ã(UL,UR)(UR −UL).

For the one-dimensional Euler equations, i.e., (3.4) with d=1, the Roe matrix is ob-
tained in terms of an average parameter vector

Q̃ =

Q̃1

Q̃3

Q̃3

 =
1

2

 √
ρL +

√
ρR√

ρLuL +
√
ρRuR√

ρLHL +
√
ρRHR

 ,

as

Ã =


0 1 0

γ−3
2

(
Q̃2

Q̃1

)2

(3− γ)
(
Q̃2

Q̃1

)
γ − 1

γ−1
2

(
Q̃2

Q̃1

)2

− Q̃2Q̃3

Q̃2
1

Q̃3

Q̃1
− (γ − 1)

(
Q̃2

Q̃1

)2

γ

 .

The Roe flux for the linearised problem can be written as a combination of a central flux,
and a dissipation term based on the jump of the conserved variables across the interface

Fi+ 1
2

=
1

2
(f(UL) + f(UR))− 1

2
R̃Λ̃R̃−1(UR −UL). (4.6)

In the expression (4.6), R̃ is the matrix of eigenvectors of Ã while Λ is the diagonal
matrix consisting of the absolute values of the eigenvalues of Ã

R̃ =

 1 1 1
ũ− ã ũ ũ+ ã

H̃ − ũ ã 1
2
ũ2 H̃ + ũ ã

 , Λ̃ = diag
(
|ũ− ã|, |ũ|, |ũ+ ã|

)
,

which are evaluated at the averaged states

ũ =
Q̃2

Q̃1

, H̃ =
Q̃3

Q̃1

, ã =

√
(γ − 1)

(
H̃ − 1

2
ũ2

)
.

For further details and extension to higher-dimensions, we refer to [123].
Recall that for a linear system of conservation laws, all the characteristic fields are

linearly degenerate. Thus, the solution of a linearised Riemann problem can contain
(contact) discontinuous jumps, but not shocks or rarefaction waves. Since rarefactions are
continuous expansion waves, the linearised approximation of rarefactions via discontinuous
jumps is a terrible approximation. However, in practice, it is only in the case of a transonic
rarefaction wave that one experiences difficulties. For a Riemann problem centered at
xi+ 1

2
, a rarefaction wave whose fan is spread on both sides of x = xi+ 1

2
is said to be

transonic (see Figure 4.1). In other words, the rarefaction fan contains a characteristic
line for which an eigenvalue of the flux Jacobian vanishes. The original Roe scheme gives
an entropy violating jump in transonic rarefactions (this will be demonstrated in Chapter
5). Several entropy fixes have been proposed for the Roe solver, which essentially ensure
that the eigenvalues remain non-zero near sonic points [53, 51, 97, 96].

The Roe flux (4.6) is just one important example of approximate Riemann solvers.
There are several other approximate Riemann solvers available in literature such as HLL,
HLLC, etc. We refer to [123] for an overview of these methods.
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4.1. Finite volume scheme

t

x

λi = 0

UL UR

Figure 4.1: A transonic rarefaction wave

4.1.4 Reconstruction and limiters

The numerical fluxes of the aforementioned finite volume methods are evaluated at the
cell-interfaces using constant cell averages. Such schemes are only first-order accurate. To
obtain a higher order scheme, we reconstruct the solution inside each cell via a polynomial
of suitable order. Consider a scalar valued function v, whose cell averages vi are given.
Let pi(x) represent the polynomial reconstruction of the solution in each cell, as shown in
Figure 4.2. In order to develop a conservative scheme, the reconstruction needs to satisfy

vi =
1

∆x

x
i+ 1

2∫
x
i− 1

2

pi(x)dx. (4.7)

The numerical flux is evaluated at the reconstructed states

v−
i+ 1

2

= pi(xi+ 1
2
), v+

i+ 1
2

= pi+1(xi+ 1
2
),

instead of the left and right cell-average values. For systems of conservation laws, the
state vector is reconstructed componentwise.

A simple approach is to use a linear polynomial of the form

pi(x) = vi + σi(x− xi), xi− 1
2
< x < xi+ 1

2
, (4.8)

where σi is the slope of the linear polynomial. Note that (4.8) already satisfies the property
given by (4.7). There are several ways of choosing the slope:

• σci = vi+1−vi−1

2∆x
(Centered slope).

• σbi = vi−vi−1

∆x
(Backward slope).

• σfi = vi+1−vi
∆x

(Forward slope).

If v is smooth, then the centered slope would give the best approximation. However,
Gibbs oscillations may appear if v has discontinuities. Thus, we need to choose the slope
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Chapter 4. Finite difference and finite volume schemes for conservation laws

xi xi+1xi+ 1
2

vi

vi+1

vi−1

vi+2

v−i+ 1
2

v+i+ 1
2

pi(x)

pi+1(x)

Figure 4.2: Piecewise polynomial reconstruction of the function v in each cell.

carefully, by selecting the smoothest possible stencil. One way to accomplish this is to
use the minmod slope σi =M(σbi , σ

f
i ) where the minmod function is given by

M(a1, ..., ak) =

{
sign(a1) min(|a1|, ..., |ak|), if sign(a1) = ... = sign(ak)

0, otherwise
. (4.9)

The advantage of choosing the minmod slope is that the reconstructed solution has the
TVD property. Thus, the reconstructed solution does not introduce any additional oscil-
lations.

An important reconstruction method called the MUSCL approach was proposed by
Van Leer [127]. The main idea of the scheme is to reconstruct using high-order polyno-
mials, and ensure the reconstruction is TVD by introducing limiters based on the local
smoothness of the solution. Consider the Taylor series expansion of the exact solution

v(x) = v(xi) + (x− xi)vx(xi) + (x− xi)2vxx(xi) +O(∆x3), (4.10)

where v(xi) need not be equal to the cell average vi. Integrating (4.10) over the cell Ii,
we get

v(xi) = vi −
∆x2

24
vxx(xi) +O(∆x3).

Thus, (4.10) can be written as

v(x) = vi + (x− xi)vx(xi) +
1

2

[
(x− xi)2 − ∆x2

12

]
vxx(xi) +O(∆x3).

This is used to construct the following second degree polynomial

pi(x) = vi + (x− xi)
vi+1 − vi−1

2∆x
+

3κ

2

[
(x− xi)2 − ∆x2

12

]
vi+1 − 2vi + vi−1

∆x2
,
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4.1. Finite volume scheme

in each cell. Note that pi satisfies the condition (4.7), and depends on the parameter κ.
The reconstruction is second-order accurate for all values of κ, except for κ = 1/3 for
which it is third-order accurate. The cell interface values are given by

v+
i− 1

2

= vi −
1

4

[
(1 + κ)∆vi− 1

2
+ (1− κ)∆vi+ 1

2

]
, (4.11)

v−
i+ 1

2

= vi +
1

4

[
(1− κ)∆vi− 1

2
+ (1 + κ)∆vi+ 1

2

]
. (4.12)

In order to make the scheme TVD, the reconstruction is restricted by introducing a
limiter function ψ

v+
i− 1

2

= vi −
1

4

[
(1 + κ)ψ

(
θ+
i

)
∆vi+ 1

2
+ (1− κ)ψ(θ−i )∆vi− 1

2

]
, (4.13)

v−
i+ 1

2

= vi +
1

4

[
(1− κ)ψ

(
θ+
i

)
∆vi+ 1

2
+ (1 + κ)ψ(θ−i )∆vi− 1

2

]
, (4.14)

where

θ−i =
∆vi+ 1

2

∆vi− 1
2

, θ+
i =

1

θ−i
=

∆vi− 1
2

∆vi+ 1
2

, (4.15)

are the jump ratios across interfaces, which are a good measure of the local smoothness
of the solution. In smooth regions we expect θ−i ≈ 1 (except at extrema), while near
a discontinuity we expect that θ−i may be far from 1. Thus, the limiter should take
values near 1 in smooth regions, to obtain second order accuracy. We would also like the
limiter to be 0 if θ−i 6 0, which indicates an extremum. Two important limiters for TVD
reconstructions (taking κ = −1) are

• Minmod limiter
ψMM(R) = max (0,min (R, 1)).

• Van Albada limiter

ψV A(R) =

{
R(R+1)
(1+R2)

, if R > 0

0, if R < 0
.

For other suitable limiters, refer to [44, 72].

4.1.5 Method of lines approach

The fully-discrete schemes discussed in the previous sections are not easy to extend beyond
second-order accuracy. It is more useful to adopt the method of lines approach, which
decouples the space and time discretizations. Integrating the conservation law (4.1) over
the cell Ii leads to the semi-discrete conservation law

∆x
dUi(t)

dt
+ f(U(xi+ 1

2
, t))− f(U(xi− 1

2
, t)) = 0, (4.16)

which is still continuous in time. The flux at the interface xi+ 1
2
is approximated by

Fi+ 1
2
(t) = (U−

i+ 1
2

(t),U+
i+ 1

2

(t)) where the left and right states U−
i+ 1

2

(t),U+
i+ 1

2

(t) are obtained
from suitable high-order polynomial approximations in each cell. This leads to a scheme
which is high-order accurate in space. Finally, the set of ODEs describing the semi-
discrete scheme is integrated in time using a high-order time-marching scheme, such as
Runge-Kutta schemes.

31



Chapter 4. Finite difference and finite volume schemes for conservation laws

4.1.6 A general reconstruction strategy

The recontructed values to be used in the semi-discerete scheme, may be obtained using
the MUSCL approach described in Section 4.1.4. However, TVD reconstructions can
lead to diffusion of shocks and clipping of smooth local extrema [84]. We describe an
alternate and more general method of obtaining high-order polynomial approximations of
the solutions in each cell, without the use of limiters [106]. The reconstruction problem
for finite volume schemes is formulated as follows.

Problem. Given the cell average values vi of a function v(x), find a polynomial pi(x)of
degree at most (k − 1) in each cell Ii such that the following properties hold

• The polynomial is a k-th order approximation of the exact function

pi(x) = v(x) +O(∆xk), xi− 1
2
< x < xi+ 1

2
.

• If cell averaged values corresponding to the stencil Si = {xi−r, ..., xi+s} are used to
construct the pi(x), where r + s+ 1 = k, then the polynomial must preserve the cell
averages for each cell in the stencil

1

∆x

x
j+ 1

2∫
x
j− 1

2

pi(x)dx = vj, j = i− 1, ..., i+ s.

This ensures the uniqueness of the polynomial of degree at most k− 1 on the stencil
Si.

The coefficients of the polynomials pi(x) can be obtained by first considering the
primitive of v(x)

V (x) =

x∫
−∞

v(y)dy,

where the lower limit −∞ is not important. Note that the value of the primitive at the
cell-interfaces can be written in terms of the cell averages vi as follows

V (xi+ 1
2
) =

i∑
j=−∞

x
j+ 1

2∫
x
j− 1

2

v(y)dy =
i∑

j=−∞
vj∆x.

Let Pi(x) corresponds to the polynomial of degree at most k, which interpolates the
primitive at the k+1 points xi−r− 1

2
, ..., xi+s+ 1

2
. Then, the required polynomial is obtained

as
pi(x) = P ′i(x)

which can be shown to satisfy the conservation property on the stencil Si = {xi−r, ..., xi+s}
(see [106] for details). Thus, the coefficients of pi(x) can be written in terms of the cell-
averages vi.
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4.1. Finite volume scheme

4.1.7 ENO reconstruction

Constructing high-order polynomials using the technique described in Section 4.1.6 would
lead to Gibbs oscillations when the function v(x) contains discontinuities. In the MUSCL
approach, these oscillations were avoided with the use of a limiter. Alternately, one could
choose the stencil of reconstruction Si adaptively, so as to select the smoothest stencil.
This is the idea behind the essentially non-oscillatory (ENO) schemes which where first
introduced by Harten et al. [54]. We briefly explain the procedure below, and refer to
[106] for further details. We first recall the Newton divided differences which will be used
to choose the appropriate stencil. The 0-th degree divided difference for the primitive
V (x) is given by

V [xi− 1
2
] ≡ V (xi− 1

2
),

while the j-th degree divided difference is obtained in an inductive manner by

V [xi− 1
2
, ..., xi+j− 1

2
] ≡

V [xi+ 1
2
, ..., xi+j− 1

2
]− V [xi− 1

2
, ..., xi+j− 3

2
]

xi+j− 1
2
− xi− 1

2

, j > 1.

In a similar manner, we can define the divided difference of the cell averages of v(x) by

v[xi] ≡ vi, v[xi, ..., xi+j] ≡
v[xi+1, ..., xi+j]− v[xi, ..., xi+j−1]

xi+j − xi
, j > 1.

Note that V [xi− 1
2
, xi+ 1

2
] = vi. Thus, the first and higher degree divided differences of V (x)

can be written in terms of divided differences of the cell averages of v(x).
The Newton divided differences have the property that

V [xi− 1
2
, ..., xi+j− 1

2
] =

1

j!

djV (ζ)

dxj
,

for some ζ ∈ (xi− 1
2
, xi+j− 1

2
), if the function V (x) is smooth in the stencil S̃i =

{xi− 1
2
, ..., xi+j− 1

2
}. A proof of this result can be found in any standard numerical analysis

text book (for instance see [5]). However, if the stencil contains a point of discontinuity,
then it is easy to show that

V [xi− 1
2
, ..., xi+j− 1

2
] = O

(
∆x−j

)
.

Thus, the Newton divided difference is a good measure of regularity of the function V (x).
The objective of the ENO algorithm is to find the smoothest stencil of k+1 consecutive

cell-interface points containing the interfaces xi− 1
2
and xi+ 1

2
, so that a polynomial Vi(x)

of degree at most k can be constructed. We begin with the stencil S̃i = {xi− 1
2
, xi+ 1

2
} for

V (x). Note that this will correspond to the stencil Si = {xi} for the cell averages of v(x).
Next, we compare the magnitude of the two divided differences V [xi− 3

2
, xi− 1

2
, xi+ 1

2
] and

V [xi− 1
2
, xi+ 1

2
, xi+ 3

2
]. If

|V [xi− 3
2
, xi− 1

2
, xi+ 1

2
]| < |V [xi− 1

2
, xi+ 1

2
, xi− 3

2
]|,

then we extend the stencil for V (x) to the left to get S̃i = {xi− 3
2
, xi− 1

2
, xi+ 1

2
} (corre-

spondingly Si = {xi−1, xi}). Otherwise, we extend the stencil to the right leading to
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Chapter 4. Finite difference and finite volume schemes for conservation laws

S̃i = {xi− 1
2
, xi+ 1

2
, xi+ 3

2
} (with Si = {xi, xi+1}). This procedure is continued till S̃i has

k + 1 points, following which the k-th degree polynomial Pi(x) is constructed using any
preferred interpolation technique (for instance using Newton interpolation). Note that
the final stencil S̃i for constructing Pi(x) is one of the k possible stencils that could be
chosen, each containing the points xi− 1

2
and xi+ 1

2
. Thus, there are k possible polynomials

approximations of degree k (correspondingly degree k − 1 for v(x)) that can be obtained
for the cell Ii.

ENO schemes have been quite successful in practice, but can show deterioration in
accuracy due to selection of unstable stencils [98]. A modification was proposed by Shu
[108], which was able to recover the loss of accuracy. Furthermore, ENO reconstructions
have been shown to satisfy an important sign property, which is crucial in the construction
of high-order entropy stable schemes [36]. The sign-property will be discussed in detail in
Chapter 5.

4.1.8 WENO reconstruction

Weighted ENO (WENO) schemes [73, 62] were proposed as an improvement over ENO
schemes. The basic idea of WENO is to take a convex combination of all k polynomials
involved in the k-th order ENO (ENO-k) approximation in a cell, and obtain a (2k−1)-th
order approximation. The weights are chosen so as to give the least weight to stencils
containing discontinuities. It has been shown in [106] that WENO schemes do not suffer
from the deterioration of accuracy faced by ENO schemes. For further details on the
implementation of WENO methods for finite volume schemes, we refer to [106].

4.2 Finite difference scheme

Having discussed finite volume schemes, we now briefly describe the formulation of fi-
nite difference schemes on uniform Cartesian meshes. For ease of notation, we restrict
our discussion to one-dimensional systems of conservation laws. These techniques can
be easily extended to the higher-dimensional setting by a dimension-by-dimension treat-
ment. Based on the discussion in Section 4.1.5 for finite volume schemes, we consider the
following semi-discrete finite difference scheme approximating (4.1)

dUi

dt
+

1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
= 0, (4.17)

where Ui(t) = U(xi, t) is the point values of the solution at the cell center xi, while
Fi+ 1

2
:= F(Ui−m+1, ...Ui+m) is a 2m-point numerical flux at the cell interface xi+ 1

2
which

is consistent, i.e., F(U, ...,U) = f(U), for all U. The initial condition for the discrete
set-up are taken to be constants Ui(0) in each cell, with Ui(0) = U0(xi). For finite
difference schemes, the notion of accuracy is understood in terms of the approximation of
conservative flux differences

1

∆x

(
Fi+ 1

2
− Fi− 1

2

)
= ∂xf(Ui) +O(∆xp). (4.18)
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4.2. Finite difference scheme

Higher-order conservative differences can be obtained by following the approach de-
scribed in [106]. Assume there exists a function h(x) such that

f(U(x)) =
1

∆x

x+ ∆x
2∫

x−∆x
2

h(y)dy,

where we have dropped the notation for the time variable for convenience. Then, the
spatial derivative of the flux is given by the exact relation

∂xf(U(x)) =
1

∆x

(
h

(
x+

∆x

2

)
− h

(
x− ∆x

2

))
.

Thus, the numerical flux can be chosen such that

Fi+ 1
2

= h(xi+ 1
2
) +O(∆xp). (4.19)

Remark 4.2.1. At first glance, it seems that the approximation error in (4.19) needs to
be O(∆xp+1) to ensure the error in (4.18) is O(∆xp). However, in practice, the O(∆xp)
term in (4.19) is found to be smooth, and thus an additional O(∆x) would appear in the
differencing of (4.18) [106].

The obvious issue with the approximation (4.19) is that it may not be possible to find
the explicit expression for h(x), even if it exists. This problem can be circumvented by
considering the primitive of h(x)

H(x) =

x∫
−∞

h(y)dy,

and noting that

H(xi+ 1
2
) =

i∑
j=−∞

x
j+ 1

2∫
x
j− 1

2

h(y)dy =
i∑

j=−∞
f(Uj)∆x.

Note that this is identical to the reconstruction problem discussed for the finite volume
set-up, where we can consider the the values f(Ui) to be the cell-averages of h(x), whose
primitive H(x) can be expressed at the cell-interfaces in terms of f(Ui). Thus, the ENO or
WENO reconstruction can be used (component-wise) to obtain the approximation (4.19),
without actually requiring the expression for h(x).

Recall that ENO and WENO methods give rise to two reconstructed values at the
cell interface xi+ 1

2
, which are obtained from the polynomial approximations in the cell Ii

and Ii+1. It is unclear a priori which reconstructed value should be chosen. This question
can be resolved by introducing upwinding into the flux, which is also important to ensure
stability of the flux. Upwinding can be achieved by a flux-splitting strategy where the flux
function is written as

f(U) = fU (U) + fD(U),
dfU (U)

dU
> 0,

dfD(U)

dU
6 0,
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Chapter 4. Finite difference and finite volume schemes for conservation laws

with fU being an upwind flux while fD is a downwind flux. At each cell-interface, both
fU and fD are approximated via ENO/WENO reconstruction methods using the values
fU (Ui) and fD(Ui) respectively. The left reconstruction value is chosen to obtain FU

i+ 1
2

,
while the right reconstruction value is used to obtain FD

i+ 1
2

. The final numerical flux is
then simply

Fi+ 1
2

= FU
i+ 1

2
+ FD

i+ 1
2
.

The simplest smooth flux splitting is given by the Lax-Friedrichs splitting

FU (U) =
1

2
(f(U) + αU), FD(U) =

1

2
(f(U)− αU), α = max

U
max
j
|λj(U)|.

Other types of splittings are also possible, the details of which can be found in [106].

Remark 4.2.2. On uniform Cartesian grids, first and second-order finite volume schemes
can also be interpreted as finite difference schemes, by replacing the cell-average values
by point values, without losing accuracy for smooth solutions. Thus, in literature, finite
difference and finite volume methods are at times used interchangeably.
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5. Entropy stable finite difference
schemes

The high-order finite difference methods described in Chapter 4 are known to perform
well in practice. However, no theoretical results are available about the entropy sta-
bility of such schemes. An alternate method of constructing finite difference schemes
which are provably entropy stable was proposed by Tadmor [116]. The approach con-
sists of two components: i) constructing a second-order entropy conservative scheme that
preserves entropy, ii) adding artificial dissipation to get entropy stability. Higher-order
entropy conservative finite difference schemes have been constructed in [71]. The design
of arbitrarily-high order entropy stable schemes was proposed recently by Fjordholm et
al. [35].

5.1 Entropy conservative schemes

Consider the semi-discrete finite difference scheme (4.17) for a one-dimensional system of
conservation laws, on a uniform Cartesian mesh. Following the approach described by
Tadmor [116], the first step towards constructing an entropy stable scheme is to construct
a scheme that conserves entropy.

Definition 5.1.1. The numerical scheme (4.17) is said to be entropy conservative if it
satisfies the discrete cell entropy relation

dη(Ui)

dt
+

1

∆x

(
q∗
i+ 1

2
− q∗

i− 1
2

)
= 0, (5.1)

where q∗
i+ 1

2

:= q∗(Ui−m+1, ...Ui+m) is a consistent numerical entropy flux.

We introduce the following notations

∆(· )i+ 1
2

= (· )i+1 − (· )i, (· )i+ 1
2

=
(· )i+1 + (· )i

2
,

which denote the undivided jump and the average across the interface xi+ 1
2
respectively.

Moreover, we introduce the entropy potential

Ψ(U) := 〈V(U), f(U)〉 − q(U), (5.2)

for a given entropy-entropy flux pair (η, q), where V is the corresponding vector of entropy
variables. The following theorem gives a sufficient condition for constructing entropy
conservative fluxes.

37



Chapter 5. Entropy stable finite difference schemes

Theorem 5.1.1 (Tadmor [115]). The numerical scheme (4.17) with the flux F∗
i+ 1

2

is
entropy conservative if 〈

∆Vi+ 1
2
,F∗

i+ 1
2

〉
= ∆Ψi+ 1

2
, (5.3)

where Ψ is defined by (5.2). Specifically, it satisfies (5.1) with the consistent numerical
entropy flux given by

q∗
i+ 1

2
=
〈
Vi+ 1

2
,F∗

i+ 1
2

〉
−Ψi+ 1

2
.

Proof. Taking the scalar product of the finite difference scheme (4.17) with Vi, we get

d
dt
η(Ui) = − 1

∆x

(〈
Vi,Fi+ 1

2

〉
−
〈
Vi,Fi− 1

2

〉)
.

Assuming (5.3) hold, we have〈
Vi,Fi+ 1

2

〉
=
〈
Vi+ 1

2
,Fi+ 1

2

〉
− 1

2

〈
∆Vi+ 1

2
,Fi+ 1

2

〉
=
〈
Vi+ 1

2
,Fi+ 1

2

〉
− 1

2
∆Ψi+ 1

2

= q∗
i+ 1

2
+ Ψi,

and similarly,
〈
Vi,Fi− 1

2

〉
= q∗

i− 1
2

+ Ψi. Thus, the numerical scheme satisfies (5.1).

For scalar conservation laws, given an entropy function η(U), a two-point entropy
conservative flux is uniquely determined by the relation

F ∗
i+ 1

2
=

∆Ψi+ 1
2

∆Vi+ 1
2

.

Example 5.1.1. Consider the linear advection equation with flux f(U) = cU , where c is
a constant. Choosing the square entropy η(U) = U2/2 and the corresponding entropy flux
as q(U) = cU2/2, we get the entropy conservative flux

F ∗
i+ 1

2
= c

(Ui + Ui+1)

2
. (5.4)

Example 5.1.2. Consider the Burgers equation with flux f(U) = U2/2. The square
entropy η(U) = U2/2 and the corresponding entropy flux as q(U) = U3/3 results in the
entropy conservative flux

F ∗
i+ 1

2
=

(
U2
i + U2

i+1 + UiUi+1

)
6

. (5.5)

For a system of conservation laws with U ∈ Rm, the algebraic relation (5.3) is a single
equation for the m unknown components of the numerical flux F∗

i+ 1
2

, and thus need not
have a unique solution. Tadmor [117] proposed the following entropy conservative flux

F∗
i+ 1

2
=

1∫
0

f(Vi+ 1
2
(s))ds, Vi+ 1

2
(s) = Vi + s(Vi+1 −Vi). (5.6)
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However, the integral (5.6) need not admit a closed form expression, and thus needs
to be approximated by suitable quadratures. An alternate entropy conservative flux was
proposed by Tadmor in [116], in which the straight line path joining the states Vi and Vi+1

is replaced by a piecewise linear path along a set of linearly independent vectors. Let {rk}
be an arbitrary set of m linearly independent vectors, and let {`k} be the corresponding
orthogonal set satisfying

〈
`j, rk

〉
= δjk. Define

V0 = Vi, Vj = Vj−1 +
〈

∆Vi+ 1
2
, `j
〉

rj, j = 1, ...,m− 1, Vm = Vi+1.

Then, the entropy conservative flux is obtained as

F∗
i+ 1

2
=

m∑
k=1

Ψ(Vk)−Ψ(Vk−1)〈
∆Vi+ 1

2
, `k
〉 `k, (5.7)

which satisfies (5.3) [116]. The advantage of the flux (5.7) over (5.6) is that it is explicit
and does not require any additional quadrature approximations. However, (5.7) may be
computationally expensive and numerically unstable [125, 35]. Thus, we consider numer-
ical fluxes constructed directly to satisfy the algebraic relation (5.3), for a given system
of conservation laws. In particular, we focus on the one-dimensional Euler equations, for
which the conserved variables and flux function are given by

U =

 ρ
ρu
E

 , f(U) =

fρ

fm

f e

 =

 ρu
ρu2 + p
u(E + p)

 . (5.8)

5.2 Kinetic energy preserving for Euler equations

In addition to entropy stability, an important property that is desirable for a numerical
scheme for the Euler equations is kinetic energy preservation. In other words, the nu-
merical scheme should evolve the kinetic energy at the discrete level in a manner that
is consistent with (3.18) (or (3.19) in one-dimension), ignoring the viscous terms. The
evolution of total kinetic energy at the discrete level for the scheme (4.17), with numerical
flux F = (F ρ, Fm, F e)>, is given by∑

i

∆x
dKi
dt

=
∑
i

[
−1

2
u2
i

dρi
dt

+ ui
d
dt

(ρu)i

]
∆x

=
∑
i

[
1

2
u2
i (F

ρ

i+ 1
2

− F ρ

i− 1
2

)− ui(Fm
i+ 1

2
− Fm

i− 1
2
)

]
=

∑
i

[
1

2
(u2

i − u2
i+1)F ρ

i+ 1
2

− (ui − ui+1)Fm
i+ 1

2

]
=

∑
i

∆ui+ 1
2

∆x

[
ui+ 1

2
F ρ

i+ 1
2

− Fm
i+ 1

2

]
∆x.

Thus, if we choose
Fm = p̃+ uF ρ, (5.9)
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Chapter 5. Entropy stable finite difference schemes

for some consistent approximations for p̃ and F ρ, then we get the discrete evolution
equation ∑

i

∆x
dKi
dt

=
∑
i

∆ui+ 1
2

∆x
p̃i+ 1

2
∆x,

which is consistent with (3.19). The sufficient condition (5.9) was proposed by Jameson
[59] to construct fluxes for the Euler equations that preserve kinetic energy.

5.3 Numerical fluxes for the Euler equations

We now describe a few important two-point numerical fluxes for the Euler equations, that
are kinetic energy preserving and/or entropy conservative.

5.3.1 Roe’s entropy conservative flux

Ismail and Roe [58] have constructed a numerical flux by introducing the parameter vector

Z =
(
Z1, Z2, Z3

)>
=

√
ρ

p

(
1, u, p

)>
,

and writing the flux in terms of Z in order to satisfy (5.3). The flux has the expression

F =

F ρ

Fm

F e

 =

 Z2Ẑ3
Z3

Z1
+ Z2

Z1
F ρ

F e

 , F e =
1

2Z1

[
(γ + 1)

(γ − 1)

F ρ

Ẑ1

+ Z2F
m

]
, (5.10)

where
φ̂i+ 1

2
=

φi+1 − φi
ln (φi+1)− ln (φi)

,

is the logarithmic average, and is well defined for strictly positive quantities φ. A numer-
ically stable procedure to evaluate the log average when φi and φi+1 are almost equal is
given in [58], and is also mentioned in Appendix B. The flux (5.10) will be referred to as
the ROE-EC flux. Note that the ROE-EC flux is not kinetic energy preserving as it does
not satisfy the condition (5.9).

5.3.2 Jameson’s kinetic energy preserving flux

Jameson [59] proposed the following simple central flux

F =

F ρ

Fm

F e

 =

 ρ u
p+ uF ρ

ρHu

 , (5.11)

which clearly satisfies the condition (5.9), and is thus kinetic energy preserving. However,
the flux does not satisfy sufficient condition (5.3) required to ensure entropy conservation.
We demonstrate through numerical experiments in Section 5.8.4 that the flux (5.11) need
not conserve entropy for smooth solutions. The flux (5.11) will be referred to as the KEP
flux.
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5.4. High-order entropy conservative fluxes

5.3.3 Kinetic energy and entropy conservative flux

An entropy conservative flux satisfying the condition (5.3) was proposed in [16], whose
expression is given by

F =

F ρ

Fm

F e

 =

 ρ̂u
p̃+ uF ρ

F e

 , F e =

[
1

2(γ − 1)β̂
− 1

2
|u|2
]
F ρ + uFm, (5.12)

where p̃ = ρ/(2β), while ρ̂, β̂ are the logarithmic averages of the respective quantities.
Note that the flux (5.12) satisfies the condition (5.9), and is thus kinetic energy preserving
as well. This flux will be referred to as the KEPEC flux.

5.4 High-order entropy conservative fluxes

The numerical fluxes described in Section 5.3 are only second-order accurate [116]. Lefloch
et al. [71] proposed a method to construct high-order entropy conservative fluxes, by using
a suitable linear combination of two-point second-order entropy conservative fluxes. This
approach is outlined in the following theorem.

Theorem 5.4.1 ([71]). For p ∈ N, assume that αp1, α
p
2, ..., α

p
p solve the linear equations

2

p∑
r=1

rαpr = 1,

p∑
l=1

l2s−1αpr = 0 (s = 2, ..., p), (5.13)

and define the flux

F∗,2p
i+ 1

2

= F∗,2p(Ui−p+1...,Ui+p) =

p∑
r=1

αpr

r−1∑
s=0

F∗(Ui−s,Ui−s+r), (5.14)

where F∗ is a two-point second-order entropy conservative flux satisfying (5.3). Then the
semi-discrete scheme (4.17) with flux F∗,2p is

1. 2pth order accurate, i.e., for sufficiently smooth solutions U we have

F∗,2p
i+ 1

2

− F∗,2p
i− 1

2

h
= ∂xF(Ui) +O(h2p).

2. Entropy conservative, i.e., it satisfies the discrete entropy identity

d
dt
ηi +

1

h

(
q∗,2p
i+ 1

2

− q∗,2p
i− 1

2

)
= 0,

where

q∗,2p
i+ 1

2

=

p∑
r=1

αpr

r−1∑
s=0

q∗(Ui−s,Ui−s+r),

with q∗ being the consistent numerical entropy flux corresponding to F∗.
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Chapter 5. Entropy stable finite difference schemes

As an example, the expression for the fourth-order entropy conservative flux is given
by

F∗,4
i+ 1

2

=
4

3
F∗(Ui,Ui+1)− 1

6
(F∗(Ui−1,Ui+1) + F∗(Ui,Ui+2)) . (5.15)

Remark 5.4.1. For any 2p-th order accurate entropy conservative flux of the form (5.14),
the following condition holds〈

Vi,F
∗,2p
i+ 1

2

− F∗,2p
i− 1

2

〉
= q∗,2p

i+ 1
2

− q∗,2p
i− 1

2

. (5.16)

Remark 5.4.2. In principle, any second-order numerical flux can be used in (5.14) to
obtain a 2p-th order accurate flux. However, the high-order flux obtained cannot be guar-
anteed to be entropy conservative unless the base flux is entropy conservative.

5.5 Entropy stable schemes

The fluxes discussed in Sections 5.3 and 5.4 perform well while approximating smooth
solutions of conservation laws. However, they lead to high-frequency Gibbs oscillations
near discontinuities. Thus, we need to introduce additional dissipation terms to control
the oscillations. Furthermore, while entropy is conserved for smooth solutions, it must be
dissipated near discontinuities in accordance to the entropy condition (2.9). Hence, the
artificial diffusion terms need to be carefully chosen to ensure that entropy condition is
satisfied at the discrete level.

Definition 5.5.1. The numerical scheme (4.17) is said to be entropy stable if it satisfies
the discrete cell entropy relation

dη(Ui)

dt
+

1

∆x

(
qi+ 1

2
− qi− 1

2

)
6 0, (5.17)

where qi+ 1
2

:= q(Ui−m+1, ...Ui+m) is a consistent numerical entropy flux.

An important class of entropy stable schemes has been proposed by Tadmor [116, 35],
where an entropy variable based numerical dissipation term is augmented to the entropy
conservative numerical flux F∗,2p

i+ 1
2

, to obtain

Fi+ 1
2

= F∗,2p
i+ 1

2

− 1

2
Di+ 1

2
∆Vi+ 1

2
. (5.18)

The dissipation matrix Di+ 1
2
in (5.18) must be symmetric and positive semi-definite, i.e.,

Di+ 1
2

= D>
i+ 1

2

> 0.

Theorem 5.5.1. The semi-discrete numerical scheme (4.17) with numerical flux (5.18)
is entropy stable. Specifically, it satisfies the discrete entropy inequality (5.17), with a
consistent numerical entropy flux given by

qi+ 1
2

= q∗,2p
i+ 1

2

− 1

2
Vi+ 1

2
Di+ 1

2
∆Vi+ 1

2
.
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Proof. Taking the scalar product of the finite difference scheme (4.17) with Vi and using
(5.16), we get

d
dt
η(Ui) = − 1

∆x

(
q∗,2p
i+ 1

2

− q∗,2p
i− 1

2

)
+

1

2∆x

〈
Vi,Di+ 1

2
∆Vi+ 1

2

〉
− 1

2∆x

〈
Vi,Di− 1

2
∆Vi− 1

2

〉
.

Since Di+ 1
2
> 0, we have〈

Vi,Di+ 1
2
∆Vi+ 1

2

〉
=
〈
Vi+ 1

2
,Di+ 1

2
∆Vi+ 1

2

〉
− 1

2

〈
∆Vi+ 1

2
,Di+ 1

2
∆Vi+ 1

2

〉
6
〈
Vi+ 1

2
,Di+ 1

2
∆Vi+ 1

2

〉
,

and 〈
Vi,Di− 1

2
∆Vi− 1

2

〉
=
〈
Vi− 1

2
,Di− 1

2
∆Vi− 1

2

〉
+

1

2

〈
∆Vi− 1

2
,Di− 1

2
∆Vi− 1

2

〉
>
〈
Vi− 1

2
,Di− 1

2
∆Vi− 1

2

〉
.

Thus, we get the required result (5.17).

5.5.1 Dissipation operator

To construct the dissipation matrix Di+ 1
2
, we take inspiration from Roe’s approximate

Riemann solver [95], which is based on the linearization of the conservation law about
some average state. The numerical flux of the Roe scheme has the form

Fi+ 1
2

=
1

2
(f(Ui+1) + f(Ui))−

1

2
Ri+ 1

2
Λi+ 1

2
R−1
i+ 1

2

∆Ui+ 1
2
, (5.19)

where R is the matrix of right eigenvectors of the flux Jacobian ∂Uf(U) and Λ = Λ(U)
is the non-negative diagonal matrix

ΛRoe = diag
(
|λ1|, . . . , |λn|

)
, (5.20)

with λk being the eigenvalues of the flux Jacobian. These matrices and eigenvalues are
evaluated at some average state depending on the state Ui and Ui+1.

The dissipation in (5.19) can be written approximately in terms of the jump in the
entropy variables, by linearizing the jump in the conserved variables as ∆U = ∂VU∆V,
where the Jacobian ∂VU is symmetric positive definite [116]. The eigenvector rescaling
theorem [8] ensures the existence of a scaling of the eigenvectors R → R̃, such that
∂VU = R̃R̃>. The Roe-type flux can thus be rewritten as

Fi+ 1
2

=
1

2
(f(Ui+1) + f(Ui))−

1

2
R̃i+ 1

2
Λi+ 1

2
R̃>
i+ 1

2
∆Vi+ 1

2
.

This motivates us to choose the Roe-type diffusion operator [35]

Di+ 1
2

= R̃i+ 1
2
Λi+ 1

2
R̃>
i+ 1

2
, (5.21)
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which is clearly symmetric and positive semi-definite. For the one-dimensional Euler
equations, these matrices are given by

R =

 1 1 1
u− a u u+ a
H − ua 1

2
u2 H + ua

 , Λ = ΛRoe = diag
(
|u− a|, |u|, |u+ a|

)
,

S = diag
( ρ

2γ
,

(γ − 1)ρ

γ
,
ρ

2γ

)
, R̃ = RS

1
2 .

(5.22)

Note that the matrix R can be obtained from (3.6) by choosing n = (1, 0, 0) and removing
the third and fourth rows and columns. For convenience we will drop the (̃.) notation,
where it will be understood that Ri+ 1

2
denotes the scaled eigenvectors.

Remark 5.5.1. It has been shown in [16] that if the KEPEC flux is used with dissipation
matrix of the form (5.22), then stationary contact waves are resolved exactly provided the
enthalpy Hi+ 1

2
and speed of sound ai+ 1

2
in (5.22) are evaluated as

Hi+ 1
2

=
1

γ − 1
a2
i+ 1

2
+

1

2
u2
i+ 1

2
, ai+ 1

2
=

√
γ

2β̂i+ 1
2

, (5.23)

with the remaining averages ui+ 1
2
and ρi+ 1

2
chosen in any consistent manner.

Remark 5.5.2. The Roe type dissipation operator, as chosen above, is just one of a
whole host of options available. In particular, we can choose ΛRus = maxi |λi|I to obtain
a Rusanov-type diffusion operator, which is much more dissipative as compared to the Roe-
type diffusion operator. Further examples of polynomial viscosity operators are provided
in [35].

In [58], Ismail and Roe attempted to answer the question about "how much" entropy
should actually be dissipated across shocks. They claimed that the entropy contained
within a shock should neither be too great nor too small, or else the shock profile will be
oscillatory or smeared out respectively. With a weak shock assumption, it is possible to
show that the entropy is dissipated as O(|∆U|3). Based on this fact, they recommended
the following modification to the dissipation operator for the Euler equations, to ensure
that the scheme is entropy consistent – it dissipates entropy at the correct rate

Λmod
i+ 1

2
= Λi+ 1

2
+ αΛ̃i+ 1

2
, Λ̃i+ 1

2
= diag

(
∆(u− a)i+ 1

2
, 0, ∆(u+ a)i+ 1

2

)
. (5.24)

The value α = 1
6
has been suggested in [58] based on the weak shock assumption. While it

is not possible to make an analytic connection between entropy dissipation and the shock
quality, they justify their claims through numerical experiments.

5.5.2 High-order diffusion operators

For smooth solutions, ∆Vi+ 1
2

= O(∆x), thus making the diffusion term in the flux (5.18)
(and hence the flux itself) only first-order accurate. The first-order scheme is a conse-
quence of taking the solution to be constant in each cell, and equal to the value at the
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5.5. Entropy stable schemes

cell-center. In order to obtain a higher order scheme, we need to appropriately reconstruct
the solution to the cell interfaces. Let Vi(x) and Vi+1(x) be polynomial reconstructions in
the cells Ii and Ii+1 respectively, as shown in Figure 5.1. Define the reconstructed values
at the interface xi+ 1

2
and the reconstructed jump by

V−
i+ 1

2

= Vi(xi+ 1
2
), V+

i+ 1
2

= Vi+1(xi+ 1
2
), JVKi+ 1

2
:= V+

i+ 1
2

−V−
i+ 1

2

.

We use the above high-order jump in the numerical flux (5.18) instead of ∆Vi+ 1
2
. For

instance, if the reconstruction is exact for polynomials of degree 2p − 1, then JVKi+ 1
2

=

O(∆xi+ 1
2
)2p for smooth functions, thus making the flux 2p-th accurate (provided the

entropy conservative flux is also 2p-th order accurate). The following lemma gives a
sufficient condition to ensure that the reconstruction does not lead to the violation of
entropy stability.

xi xi+1xi+ 1
2

Vi

Vi+1

Vi−1

Vi+2

V −
i+ 1

2

V +
i+ 1

2

Vi(x)

Vi+1(x)

Figure 5.1: Piecewise polynomial reconstruction of the entropy variables V in each cell.

Lemma 5.5.1 (Fjordholm et al.[35]). For each interface xi+ 1
2
, let Ri+ 1

2
be non-singular

and Λi+ 1
2
be any non-negative diagonal matrix. Define the numerical diffusion matrix

Di+ 1
2

= Ri+ 1
2
Λi+ 1

2
R>
i+ 1

2
.

Let V−
i+ 1

2

and V+
i+ 1

2

be the reconstructed values of the entropy variables at the interface,
from cells Ii and Ii+1 respectively. Assume that the reconstruction ensures the existence
of a diagonal matrix Bi+ 1

2
> 0 such that

JVKi+ 1
2

=
(
R>
i+ 1

2

)−1
Bi+ 1

2
R>
i+ 1

2
∆Vi+ 1

2
. (5.25)

Then the scheme with the numerical flux

Fi+ 1
2

= F∗,2p
i+ 1

2

− 1

2
Di+ 1

2
JVKi+ 1

2
, (5.26)

is entropy stable, with the consistent numerical entropy flux

qi+ 1
2

:= q∗,2p
i+ 1

2

− 1

2
V
>
i+ 1

2
Di+ 1

2
JVKi+ 1

2
.
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Proof. As in the proof of Lemma 5.5.1, consider (4.17) with the flux defined by (5.26),
and take the scalar product with the entropy variables Vi to get

d
dt
η(Ui) = − 1

∆x

(
q∗,2p
i+ 1

2

− q∗,2p
i− 1

2

)
+

1

2

〈
Vi,Di+ 1

2
JVKi+ 1

2

〉
− 1

2

〈
Vi,Di− 1

2
JVKi− 1

2

〉
.

Now,〈
Vi,Di+ 1

2
JVKi+ 1

2

〉
=
〈
Vi+ 1

2
,Di+ 1

2
JVKi+ 1

2

〉
− 1

2

〈
∆Vi+ 1

2
,Ri+ 1

2
Λi+ 1

2
Bi+ 1

2
R>
i+ 1

2
JVKi+ 1

2

〉
.

Since Ri+ 1
2
Λi+ 1

2
Bi+ 1

2
R>
i+ 1

2

is symmetric positive semi-definite, we get〈
Vi,Di+ 1

2
JVKi+ 1

2

〉
6
〈
Vi+ 1

2
,Di+ 1

2
JVKi+ 1

2

〉
.

Similarly, 〈
Vi,Di− 1

2
JVKi− 1

2

〉
>
〈
Vi− 1

2
,Di− 1

2
JVKi− 1

2

〉
.

Thus, the entropy inequality (5.17) is satisfied.

5.5.3 Reconstruction procedure

In order to use Lemma 5.5.1, we describe a reconstruction procedure that satisfies (5.25).
For each cell interface xi+ 1

2
, define the scaled entropy variables Z = R>

i+ 1
2

V. Let Z−
i+ 1

2

,
Z+
i+ 1

2

be the reconstructed values of Z at the interface from cells Ii and Ii+1 respectively.
Define

V−
i+ 1

2

= (R>
i+ 1

2
)−1Z−

i+ 1
2

, V+
i+ 1

2

= (R>
i+ 1

2
)−1Z+

i+ 1
2

=⇒ JVKi+ 1
2

= (R>
i+ 1

2
)−1JZKi+ 1

2
.

Thus, the dissipation terms in the flux given by (5.26) can be written as

Di+ 1
2
JVKi+ 1

2
= Ri+ 1

2
Λi+ 1

2
JZKi+ 1

2
.

The condition given by (5.25) can now be interpreted in terms of the scaled variables as

JZKi+ 1
2

= Bi+ 1
2
∆Zi+ 1

2
,

for some diagonal matrix Bi+ 1
2
with non-negative entries. This further reduces to a sign

property on Z which holds component-wise:

sign
(
JZKi+ 1

2

)
= sign

(
∆Zi+ 1

2

)
. (5.27)

Figure 5.2(a) shows an example of a reconstruction (in Z) satisfying the sign property,
while Figure 5.2(b) gives an example of a reconstruction violating the sign property.

High-order entropy stable schemes, based on a combination of high-order entropy con-
servative fluxes and high-order dissipation operators obtained by using a sign-preserving
reconstruction of the scaled entropy variables, are termed as TeCNO schemes [35].
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xi xi+1xi+1
2

Zi

Zi+1

(a)

xi xi+1xi+1
2

Zi

Zi+1

(b)

Figure 5.2: Demonstration of a reconstruction a) satisfying the sign property, b) violating
the sign property.

5.5.4 Reconstruction with sign property

Only a small class of reconstructions are known to satisfy the sign-property.

Minmod reconstruction

A linear reconstruction of Z (component-wise) with the minmod limiter (4.9), leads to
second-order (limited) reconstructed states

Z−
i+ 1

2

= Zi +
1

2
M
(

∆Zi+ 1
2
,∆Zi− 1

2

)
, Z+

i+ 1
2

= Zi+1 −
1

2
M
(

∆Zi+ 3
2
,∆Zi+ 1

2
,
)
.

The fact that the minmod limiter satisfies the sign-property has already been proved on
Cartesian grids [35]. This is also proved on unstructured grids in Chapter 9.

ENO interpolation

In Section 4.1.7, we described the ENO reconstruction procedure using cell averages, which
additionally satisfies the sign-property [36]. The procedure can be used to get high-order
finite difference schemes by treating the value of the flux f(U) at the cell-centers to be cell-
averages of another function (See Section 4.2). However, we cannot prove the resultant
scheme to be entropy stable.

We can instead consider the ENO interpolation [36] technique, which makes use of
point values of the solution. We briefly describe the algorithm for ENO interpolation.
Let v(x) be a function, with vi = v(xi) denoting its cell-center values. We wish to
construct a polynomial pi(x) in the cell Ii such that pi(xi) = vi and

pi(xi− 1
2
) = v(xi− 1

2
) +O(∆xk), pi(xi+ 1

2
) = v(xi+ 1

2
) +O(∆xk).

In order to find such polynomial of degree at most k − 1, which leads to a k-th order
approximation of v(x) in the cell Ii, we need a stencil Si with k points. We make use of
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the Newton divided differences

v[xi] ≡ vi, v[xi, ..., xi+j] ≡
v[xi+1, ..., xi+j]− v[xi, ..., xi+j−1]

xi+j − xi
.

to adaptively select the smoothest stencil of k consecutive cell-centers. We begin with
the stencil Si = {xi} and compare the magnitude of the two divided differences v[xi−1, xi]
and v[xi, xi+1]. If

|v[xi−1, xi]| < |v[xi, xi+1]|,
then we extend the stencil to the left and get Si = {xi−1, xi}. Otherwise, we extend
the stencil to the right, leading to Si = {xi, xi+1}. This procedure is continued till Si
has k points, following which the polynomial pi(x) is constructed using any preferred
interpolation technique. As was the case with ENO reconstruction, there are k possible
polynomial approximations of degree k − 1 that can be constructed in the cell Ii. The
ENO interpolation algorithm picks the polynomial corresponding to the smoothest stencil.
ENO interpolation has been shown to satisfy the sign property in [36], and can thus be
used to obtain high-order accurate entropy stable schemes.

A third-order sign-preserving reconstruction based on appropriate limiting of quadratic
polynomials, has also been recently proposed in [18]. To the best of our knowledge, no
other known reconstruction satisfies this crucial property. In Chapter 6, we propose a
third-order WENO-type interpolation procedure that satisfies the sign-property.

5.6 Viscous flux discretization

In this section we discretize the viscous flux of the Navier-Stokes equations, with the aim
to satisfy a discrete version of entropy stability (3.27), and to ensure that the discrete
kinetic energy evolution is consistent with (3.19).

Consider the Navier-Stokes equations in one-dimension

∂tU + ∂xf(U) = ∂xg(U), (5.28)

where U and f are given by (5.8), while the viscous flux g is given by

g =

gρ

gm

ge

 =

 0
τ

uτ −Q

 , τ =
4

3
µ∂xu, Q = −κ∂xθ. (5.29)

Consider the following semi discrete scheme for (5.28)

dUi

dt
+

1

∆x
(Fi+ 1

2
− Fi− 1

2
) =

1

∆x
(Gi+ 1

2
−Gi− 1

2
), (5.30)

with the numerical fluxes given by

Fi+ 1
2

=

F ρ

Fm

F e


i+ 1

2

, Gi+ 1
2

=

Gρ

Gm

Ge


i+ 1

2

=

 0
τ̃

ũτ̃ − Q̃


i+ 1

2

(5.31)
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where F ρ, Fm, F e, τ̃ , ũ and Q̃ are any consistent approximations of the corresponding
quantities. We choose the following approximation for the terms in the viscous flux

τ̃i+ 1
2

=
4

3
µ

∆ui+ 1
2

∆x
, ũi+ 1

2
= ui+ 1

2
, Q̃i+ 1

2
= −κ

∆θi+ 1
2

∆x
, (5.32)

and show that the discretization (5.32) leads to the formulation of kinetic energy pre-
serving and entropy stable schemes for the Navier-Stokes equations [16], provided the
numerical inviscid fluxes are chosen appropriately.

5.6.1 Kinetic energy preservation for one-dimensional Navier-Stokes
equations

The evolution of total kinetic energy corresponding to the scheme (5.30) can be derived
as∑

i

∆x
dKi
dt

=
∑
i

[
−1

2
u2
i

dρi
dt

+ ui
d
dt

(ρu)i

]
∆x

=
∑
i

[
1

2
u2
i (F

ρ

i+ 1
2

− F ρ

i− 1
2

)− ui(Fm
i+ 1

2
− Fm

i− 1
2
)

]
+
∑
i

[
ui(G

m
i+ 1

2
−Gm

i− 1
2
)
]
.

In Section 5.2, we have already shown that if the inviscid momentum flux is of the form
(5.9), then

∑
i

[
1

2
u2
i (F

ρ

i+ 1
2

− F ρ

i− 1
2

)− ui(Fm
i+ 1

2
− Fm

i− 1
2
)

]
=

∑
i

∆ui+ 1
2

∆x
p̃i+ 1

2
∆x,

where p̃ is any consistent approximation for pressure. Using (5.32), the viscous contribu-
tion to the evolution of kinetic energy can be reformulated as

∑
i

[
ui(G

m
i+ 1

2
−Gm

i− 1
2
)
]

= −
∑
i

[
(ui − ui+1)Gm

i+ 1
2

]
= −4

3
µ
∑
i

(
∆ui+ 1

2

∆x

)2

∆x.

Thus, for schemes with a kinetic energy preserving inviscid flux satisfying (5.9), we have

∑
i

∆x
dKi
dt

=
∑
i

∆ui+ 1
2

∆x
p̃i+ 1

2
∆x− 4

3
µ
∑
i

(
∆ui+ 1

2

∆x

)2

∆x,

which is consistent with (3.19). Note that the viscous forces dissipate the total kinetic
energy at the discrete level, as is the case at the continuous level.

Both KEPEC and KEP fluxes with a viscous flux dicretization given by (5.32), lead
to consistent formulations for the discrete evolution of kinetic energy.

5.6.2 Entropy stability for one-dimensional Navier-Stokes equations

As discussed in Section 3.4, if we ignore the boundary contributions by assuming periodic
or adiabatic no-slip boundary conditions, then the total entropy for the Navier-Stokes
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Chapter 5. Entropy stable finite difference schemes

system decays in time. A scheme for the Navier-Stokes equations which is consistent with
this behaviour will be called entropy stable. Taking the scalar product of the scheme
(5.30) and summing over all cells, we get∑

i

〈
Vi,

dUi

dt

〉
∆x+

∑
i

〈
Vi, (Fi+ 1

2
− Fi− 1

2
)
〉

=
∑
i

〈
Vi, (Gi+ 1

2
−Gi− 1

2
)
〉
. (5.33)

If Fi+ 1
2
is an entropy conservative flux as discussed in Section 5.1, then the following

relation holds 〈
Vi, (Fi+ 1

2
− Fi− 1

2
)
〉

= qi+ 1
2
− qi− 1

2
, (5.34)

where qi+ 1
2
is a consistent numerical entropy flux. The viscous contribution in (5.33) can

be rewritten as ∑
i

〈
Vi, (Gi+ 1

2
−Gi− 1

2
)
〉

= −
∑
i

〈
∆Vi+ 1

2
,Gi+ 1

2

〉
. (5.35)

For the viscous discretization (5.32), the summand on the right of (5.35) evaluates out to
be〈

∆Vi+ 1
2
,Gi+ 1

2

〉
=

4

3
µ∆(2βu)i+ 1

2

∆ui+ 1
2

∆x
− 4

3
µui+ 1

2
∆(2β)i+ 1

2

∆ui+ 1
2

∆x
− κ∆(2β)i+ 1

2

∆θi+ 1
2

∆x
.

Using the relation ∆(ab) = a∆b+ b∆a and the fact that β = 1/(Rθ), we get〈
∆Vi+ 1

2
,Gi+ 1

2

〉
=

8

3
µβi+ 1

2

(
∆ui+ 1

2

∆x

)2

+
κ

Rθiθi+1

(
∆θi+ 1

2

∆x

)2

> 0. (5.36)

Thus, (5.33), (5.34), (5.35) and (5.36) lead to the relation∑
i

〈
Vi,

dUi

dt

〉
∆x =

∑
i

dηi
dt

∆x 6 −
∑
i

(
qi+ 1

2
− qi− 1

2

)
= 0, (5.37)

since the flux terms qi+ 1
2
cancel one another when summed over all cells. The relation

(5.37) proves that the total entropy for the discrete system decays in time, which is
consistent with the behaviour at the continuous level.

The KEPEC and ROE-EC fluxes, being entropy conservative, will lead to entropy
stability provided the viscous flux is discretized according to (5.32)

Remark 5.6.1. The discrete entropy estimate (5.37) can also be obtained if we replace
the condition (5.34) with 〈

Vi, (Fi+ 1
2
− Fi− 1

2
)
〉
6 qi+ 1

2
− qi− 1

2

which holds true for any entropy stable flux Fi+ 1
2
.

Remark 5.6.2. The KEPEC flux satisfies both (5.9) and (5.34), thus can be used to
construct a kinetic energy preserving and entropy stable finite difference scheme, provided
the viscous fluxes are discretized according to (5.32).

Remark 5.6.3. Viscous flux approximations of the form (5.32) cannot be use for the
Navier-Stokes equations in higher-dimensions, due to the existence of cross derivative
terms in the viscous fluxes. An alternate formulation for the multi-dimensional Navier-
Stokes equations is described in the next section.
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5.7. Two-dimensional finite difference scheme

5.7 Two-dimensional finite difference scheme

We briefly describe the extension of the various notions described previously in this chap-
ter, to the two-dimensional setting. The extension to three-dimensions can be done in a
similar manner.

Consider a uniform two-dimensional Cartesian mesh, with mesh point xi,j = (xi, yj) =
(i∆x, j∆y) forming the cell centers of cells Ii,j = [xi− 1

2
, xi+ 1

2
)× [yj− 1

2
, yj+ 1

2
), for (i, j) ∈ Z2.

We call the points (xi+ 1
2
, yj+ 1

2
) as the nodes of the mesh. Define the jumps and arithmetic

averages across cell interfaces by

∆φi+ 1
2
,j = φi+1,j − φi,j, φi+ 1

2
,j =

φi+1,j + φi,j
2

,

∆φi,j+ 1
2

= φi,j+1 − φi,j, φi,j+ 1
2

=
φi,j+1 + φi,j

2
.

Additionally, we define two discrete multi-dimensional operators T xy, T yx, which act at
nodes as

[T xyφ]i+ 1
2
,j+ 1

2
=

1

2

(
φi+1,j+1 − φi−1,j+1

∆x
+
φi+1,j−1 − φi−1,j−1

∆x

)
,

[T yxφ]i+ 1
2
,j+ 1

2
=

1

2

(
φi+1,j+1 − φi+1,j−1

∆y
+
φi−1,j+1 − φi−1,j−1

∆y

)
,

and at cell-centers as

[T xyφ]i,j =
1

2

(
φi+ 1

2
,j+ 1

2
− φi− 1

2
,j+ 1

2

∆x
+
φi+ 1

2
,j− 1

2
− φi− 1

2
,j− 1

2

∆x

)
,

[T yxφ]i,j =
1

2

(
φi+ 1

2
,j+ 1

2
− φi+ 1

2
,j− 1

2

∆y
+
φi− 1

2
,j+ 1

2
− φi− 1

2
,j− 1

2

∆y

)
.

If φ is not defined at the nodes, then the nodal values are obtained by averaging its values
over the neighbouring cell-centers

φi+ 1
2
,j+ 1

2
=

1

4
(φi+1,j+1 + φi,j+1 + φi+1,j + φi,j). (5.38)

Note that T xy approximates the partial derivative in the x-direction, by a second-order
divided difference in the x-direction, followed by an averaging in the y-direction. Similarly,
T yx approximates the partial derivative in the y-direction, by a second-order divided
difference in the y-direction, followed by an averaging in the x-direction. The following
lemmas describe important summation-by-parts formulae for these two operators.

Lemma 5.7.1. Consider two grid function φ and χ, whose values are given at cell-centers.
Then the following relation holds∑

i,j

φi,j[T xyχ]i,j = −
∑
i,j

χi,j[T xyφ]i,j,
∑
i,j

φi,j[T yxχ]i,j = −
∑
i,j

χi,j[T yxφ]i,j, (5.39)

assuming periodic boundary conditions. The required nodal values of φ and χ are obtained
using (5.38).
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Proof. We prove the relation for the T xy operator, with the proof for T yx following on
the same lines. We have∑

i,j

φi,j[T xyχ]i,j =
∑
i,j

φi,j
1

2∆x

(
χi+ 1

2
,j+ 1

2
− χi− 1

2
,j+ 1

2
+ χi+ 1

2
,j− 1

2
− χi− 1

2
,j− 1

2

)
. (5.40)

Using (5.38) to obtain the nodal values of φ and χ, we get∑
i,j

φi,jχi+ 1
2
,j+ 1

2
=

∑
i,j

φi,j (χi+1,j+1 + χi,j+1 + χi+1,j + χi,j)

=
∑
i,j

(φi−1,j−1 + φi,j−1 + φi−1,j + φi,j)χi,j

=
∑
i,j

φi− 1
2
,j− 1

2
φi,j.

Handling the remaining terms on the right of (5.40) in a similar manner, we can write

∑
i,j

φi,j[T xyχ]i,j = −
∑
i,j

χi,j
1

2∆x

(
φi+ 1

2
,j+ 1

2
− φi− 1

2
,j+ 1

2
+ φi+ 1

2
,j− 1

2
− φi− 1

2
,j− 1

2

)
= −

∑
i,j

χi,j[T xyφ]i,j,

which is the required relation.

Lemma 5.7.2. Consider two grid function φ and χ such that φ is defined at cell-centers,
while χ is defined at nodes. Then the following relation holds∑

i,j

φi,j[T xyχ]i,j = −
∑
i,j

χi+ 1
2
,j+ 1

2
[T xyφ]i+ 1

2
,j+ 1

2
,∑

i,j

φi,j[T yxχ]i,j = −
∑
i,j

χi+ 1
2
,j+ 1

2
[T yxφ]i+ 1

2
,j+ 1

2
,

(5.41)

assuming periodic boundary conditions.

Proof. As done in Lemma 5.7.1, we prove the relation for the T xy operator. Since χ is
defined at nodes and φ is defined at cell-centers, we have∑

i,j

φi,j[T xyχ]i,j =
∑
i,j

φi,j
1

2∆x

(
χi+ 1

2
,j+ 1

2
− χi− 1

2
,j+ 1

2
+ χi+ 1

2
,j− 1

2
− χi− 1

2
,j− 1

2

)
=

∑
i,j

(φi,j − φi+1,j + φi,j+1 − φi+1,j+1)
1

2∆x
χi+ 1

2
,j+ 1

2

= −
∑
i,j

χi+ 1
2
,j+ 1

2
[T xyφ]i+ 1

2
,j+ 1

2
,

which proves the result.
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5.7.1 Inviscid discretization

Consider the following semi-discrete scheme for the two-dimensional Euler equations, i.e.,
(3.4) with d=2:

dUi,j

dt
+

(
Fx
i+ 1

2
,j
− Fx

i− 1
2
,j

)
∆x

+

(
Fy

i,j+ 1
2

− Fy

i,j− 1
2

)
∆y

= 0. (5.42)

Here, Ui,j(t) = U(xi, yj, t) is the value of the solution at the cell-center xi,j, and Fx
i+ 1

2
,j
,

Fy

i,j+ 1
2

are consistent approximations of the inviscid flux components f1, f2 respectively.
The numerical scheme (5.42) is entropy conservative if it satisfies

dη(Ui)

dt
+

(
qx,∗
i+ 1

2
,j
− qx,∗

i− 1
2
,j

)
∆x

+

(
qy,∗
i,j+ 1

2

− qy,∗
i,j− 1

2

)
∆y

= 0, (5.43)

where qx,∗
i+ 1

2
,j
, qy,∗
i,j+ 1

2

are numerical entropy fluxes consistent with q1, q2. The entropy po-
tential functions corresponding to the entropy-entropy flux pair (η(U),q(U)) are given
by

Ψx(U) := 〈V(U), f1(U)〉 − q1(U), Ψy(U) := 〈V(U), f2(U)〉 − q2(U).

The numerical scheme (5.42) with the flux Fx,∗
i+ 1

2
,j
,Fy,∗

i,j+ 1
2

is entropy conservative if the
sufficient conditions〈

∆Vi+ 1
2
,j,F

x,∗
i+ 1

2
,j

〉
= ∆Ψx

i+ 1
2
,j
,
〈

∆Vi,j+ 1
2
,Fy,∗

i,j+ 1
2

〉
= ∆Ψy

i,j+ 1
2

, (5.44)

hold [35], with the consistent numerical entropy fluxes given by

qx,∗
i+ 1

2
,j

=
〈
Vi+ 1

2
,j,F

x,∗
i+ 1

2
,j

〉
−Ψx

i+ 1
2
,j, qy,∗

i,j+ 1
2

=
〈
Vi,j+ 1

2
,Fy,∗

i,j+ 1
2

〉
−Ψy

i,j+ 1
2
.

Entropy stable schemes can be constructed by augmenting the entropy conservative
fluxes with entropy variable based dissipation

Fx
i+ 1

2
,j

= Fx,∗
i+ 1

2
,j
− 1

2
Dx
i+1,j∆Vi+ 1

2
,j, Fy

i,j+ 1
2

= Fy,∗
i,j+ 1

2

− 1

2
Dy

i,j+ 1
2

∆Vi,j+ 1
2
,

where Dx
i+1,j,D

y

i,j+ 1
2

are symmetric and positive semi-definite matrices. Higher-order en-
tropy stable fluxes can be obtained by a dimension-by-dimension application of the inter-
polation formula (5.14), and a sign-preserving reconstruction of scaled entropy variables
in the dissipation terms.

Let the inviscid numerical fluxes be of the form Fx =
(
F x,ρ, F x,m1 , F x,m2 , F x,e

)>
and Fy =

(
F y,ρ, F y,m1 , F y,m2 , F y,e

)>. Then the condition (5.9), required to con-
struct kinetic energy preserving schemes for the Euler equation, can be extended to two-
dimensions [59] as

Fx,m = p̃e1 + uF x,ρ, Fy,m = p̃e2 + uF y,ρ, (5.45)

where e1 = (1, 0)> and e2 = (0, 1)>, while p̃, F x,ρ, F y,ρ are any consistent approximations
of the pressure and the mass flux components.
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5.7.2 Viscous discretization

We consider the following semi-discrete finite difference scheme for the two-dimensional
Navier-Stokes equations, i.e., (3.10) with d=2, by including viscous discretization terms
in the scheme (5.42)

dUi,j

dt
+

(
Fx
i+ 1

2
,j
− Fx

i− 1
2
,j

)
∆x

+

(
Fy

i,j+ 1
2

− Fy

i,j− 1
2

)
∆y

= [T xyGx]i,j + [T yxGy]i,j.
(5.46)

The numerical viscous fluxes are evaluated in a consistent manner at the nodes of the
mesh, i.e., Gx

i+ 1
2
,j+ 1

2

, Gy

i+ 1
2
,j+ 1

2

, thus the viscous terms on the right of (5.46) make sense.
In the following two sections, we describe the approximation of the viscous flux from the
point of view of obtaining kinetic energy preservation or entropy stability.

5.7.3 Kinetic energy preservation

Consider the viscous fluxes in the component-wise form Gx = (Gx,ρ, Gx,m1 , Gx,m2 , Gx,e)>

and Gy = (Gy,ρ, Gy,m1 , Gy,m2 , Gy,e)>. The discrete evolution of total kinetic energy
corresponding to the scheme (5.46) is given by

∑
i,j

∆x∆y
dKi,j
dt

=
∑
i,j

[
−1

2
|u|2i,j

dρi,j
dt

+

〈
ui,j,

d
dt

(ρu)i,j

〉]
∆x∆y

=
∑
i,j

1

2
|u|2i,j

(
F x,ρ

i+ 1
2
,j
− F x,ρ

i− 1
2
,j

)
∆x

+
1

2
|u|2i,j

(
F y,ρ

i,j+ 1
2

− F y,ρ

i,j− 1
2

)
∆y

∆x∆y

︸ ︷︷ ︸
I

−
∑
i,j


〈
ui,j,F

x,m

i+ 1
2
,j
− Fx,m

i− 1
2
,j

〉
∆x

+

〈
ui,j,F

y,m

i,j+ 1
2

− Fy,m

i,j− 1
2

〉
∆y

∆x∆y

︸ ︷︷ ︸
II

+
∑
i,j

[〈ui,j, [T xyGx,m]i,j〉+ 〈ui,j, [T yxGy,m]i,j〉] ∆x∆y︸ ︷︷ ︸
III

,

where I + II is the inviscid contribution and III is the contribution due to viscous
forces. Assuming the inviscid flux satisfies the condition (5.45), then after a few steps of
manipulation similar to those done in Section 5.2, we can rewrite the inviscid contribution
as

I + II =
∑
i,j

[
∆(u1)i+ 1

2
,j

∆x
p̃i+ 1

2
,j +

∆(u2)i,j+ 1
2

∆y
p̃i,j+ 1

2

]
∆x∆y,

which is consistent with the work done by the pressure forces on the right hand side of
(3.18).
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We approximate the momentum viscous flux components at the mesh nodes by

Gx,m

i+ 1
2
,j+ 1

2

= µ

4
3
[T xyu1]− 2

3
[T yxu2]

[T xyu2] + [T yxu1]


i+ 1

2
,j+ 1

2

,

Gy,m

i+ 1
2
,j+ 1

2

= µ

 [T xyu2] + [T yxu1]

4
3
[T yxu2]− 2

3
[T xyu1]


i+ 1

2
,j+ 1

2

,

(5.47)

which are well defined since u is defined at the cell-centers. Using Lemma 5.7.2, the
viscous contribution III can be rewritten as

III = −
∑
i,j

[〈
[T xyu]i+ 1

2
,j+ 1

2
,Gx,m

i+ 1
2
,j+ 1

2

〉
+
〈

[T yxu]i+ 1
2
,j+ 1

2
,Gy,m

i+ 1
2
,j+ 1

2

〉]
∆x∆y. (5.48)

Note that the summand on the left hand side of (5.48) is exactly the viscous contribution
in the last equality of the continuous equation (3.16), with the partial derivative operators
replaced by the discrete derivative operators T xy and T yx. Following the same steps as
those outlined in Section 3.3, we can show that the contribution III is consistent with
the viscous contribution at the continuous level.

Thus, the evolution of total kinetic energy by a numerical scheme with the inviscid
fluxes satisfying (5.45), and the viscous fluxes discretized according to (5.47), is consistent
with (3.18).

Remark 5.7.1. The condition (5.47) only describes the discretization of the momentum
terms of the viscous fluxes. In order to be consistent, we choose Gx,ρ = Gy,ρ = 0, while we
are free to choose Gx,e, Gy,e in any consistent manner. In particular, we make the choice

Gx,e

i+ 1
2
,j+ 1

2

=
〈
ui+ 1

2
,j+ 1

2
,Gx,m

i+ 1
2
,j+ 1

2

〉
+ κ[T xyθ]i+ 1

2
,j+ 1

2
,

Gy,e

i+ 1
2
,j+ 1

2

=
〈
ui+ 1

2
,j+ 1

2
,Gy,m

i+ 1
2
,j+ 1

2

〉
+ κ[T yxθ]i+ 1

2
,j+ 1

2
,

(5.49)

where ui+ 1
2
,j+ 1

2
is obtained using (5.38), while [T xyθ]i+ 1

2
,j+ 1

2
, [T yxθ]i+ 1

2
,j+ 1

2
use the values

of temperature available at cell-centers.

5.7.4 Entropy stability

While the discretization (5.47) leads to kinetic energy preservation, we are unable to find
a consistent approximation for Gx,e and Gy,e that would also lead to an entropy stable
scheme for the Navier-Stokes equations. We thus propose an alternate approximation of
the viscous fluxes that gives us the desired discrete estimate.

Taking the scalar product of the scheme (5.46) with Vi,j and summing over all cells
leads to∑

i,j

dηij
dt

∆x∆y +
∑
i,j

〈
Vi,j,

(
Fx
i+ 1

2
,j
− Fx

i− 1
2
,j

)〉
∆x+

∑
i,j

〈
Vi,j,

(
Fy

i,j+ 1
2

− Fy

i,j− 1
2

)〉
∆y

=
∑
i,j

[〈Vi,j, [T xyGx,m]i,j〉+ 〈Vi,j, [T yxGy,m]i,j〉] ∆x∆y︸ ︷︷ ︸
IV

.

(5.50)
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As done in Section 5.6.2, the inviscid flux terms in (5.50) drop out by choosing an entropy
conservative/stable flux, satisfying the cell entropy relations〈

Vi,j,
(
Fx
i+ 1

2
,j
− Fx

i− 1
2
,j

)〉
6 qx

i+ 1
2
,j
− qx

i− 1
2
,j
,
〈
Vi,j,

(
Fy

i,j+ 1
2

− Fy

i,j− 1
2

)〉
6 qy

i,j+ 1
2

− qy
i,i− 1

2

,

(5.51)
with strict equality holding for entropy conservative fluxes.

In order to approximate the viscous fluxes at the cell-centers, we make use of its
symmetric formulation when written in terms of the entropy variables (see Section 3.2.1).
We choose

Gx
i+ 1

2
,j+ 1

2
= K11(Vi+ 1

2
,j+ 1

2
)[T xyV]i+ 1

2
,j+ 1

2
+ K12(Vi+ 1

2
,j+ 1

2
)[T yxV]i+ 1

2
,j+ 1

2
,

Gy

i+ 1
2
,j+ 1

2

= K21(Vi+ 1
2
,j+ 1

2
)[T xyV]i+ 1

2
,j+ 1

2
+ K22(Vi+ 1
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(5.52)

where the matrices K11,K12,K21,K22 were introduced in see Section 3.2.1. The matrices
are evaluated with the nodal value of the entropy variables, obtained using (5.38). Recall
that the matrix

K =

(
K11 K12

K21 K22

)
,

is symmetric and positive semi-definite. With an application of the results of Lemma
5.7.2, the right hand side of (5.50) can be rewritten as

IV = −
∑
i,j
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(5.53)

where W>
i+ 1

2
,j+ 1

2

=
(

[T xyV]>
i+ 1

2
,j+ 1

2

, [T yxV]>
i+ 1

2
,j+ 1

2

)
∈ R8.

Thus, choosing an entropy conservative/stable flux approximation for the inviscid flux,
in tandem with the viscous flux discretization (5.53), gives the desired consistent entropy
stability estimate ∑

i,j

dηij
dt

∆x∆y 6 0.

Remark 5.7.2. The above formulations can be extend to three-dimensions by constructing
operators similar to T xy and T yx, such that they take a central divided difference in one
coordinate direction (depending on the partial derivative being approximated) and perform
a central averaging in the remaining two coordinate directions.

5.8 Numerical results

We now present numerical results with the schemes discussed in this chapter, on several
standard test cases for compressible flows. We introduce the following flux nomenclature:

• KEPEC: The kinetic energy preserving and entropy conservative flux (5.12).
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• KEPEC4: The fourth-order version of the KEPEC flux, obtained using the inter-
polation formula (5.15). KEPEC4 is also entropy conservative, however it does not
satisfy the condition (5.9) required to ensure kinetic energy preservation.

• KEPES: The KEPEC flux augmented with a first-order entropy variable based
dissipation operator, with the dissipation matrix given by (5.22).

• KEPES-TeCNO: The KEPES flux with the scaled entropy variables in the dissi-
pation operator reconstructed using the minmod limiter.

• ROE-EC: Roe’s entropy conservative flux (5.10). Recall that ROE-EC does not
preserve total kinetic energy.

• ROE-EC4: The fourth-order version of the ROE-EC flux obtained using the inter-
polation formula (5.15). ROE-EC4 is also entropy conservative.

• ROE-ES: The ROE-EC flux with a first-order entropy variable based dissipation
operator, with the dissipation matrix given by (5.22).

• ROE-ES-TeCNO: The ROE-ES flux with the scaled entropy variables in the dis-
sipation operator reconstructed using the minmod limiter.

• KEP: The kinetic energy preserving flux (5.11) proposed by Jameson.

• KEP4: The fourth-order version of the KEP flux, obtained using the interpolation
formula (5.15). KEP4 no longer satisfies the condition (5.9) required to ensure
kinetic energy preservation.

• Roe: The original approximate Riemann solver proposed by Roe, for which the
flux is given by (4.6). Without an entropy fix, the Roe scheme can lead to entropy
violating stationary shocks near sonic points.

The one-dimensional flux expressions have been described in this chapter, while their
higher-dimensional extensions are available in Appendix C.

In practice we work with a finite computational domain, and thus need to apply suit-
able boundary conditions. Consider a one-dimensional domain [a, b], which is discretized
usingN cells with a mesh size ∆x = (b−a)/N , such that the cell-interfaces and cell-centers
are given by

a = x 1
2
< ... < xN+ 1

2
= b, a+

∆x

2
= x1 < ... < xN = b− ∆x

2
,

respectively. We describe the procedure to set the boundary conditions on the left bound-
ary, with an analogous procedure holding for the right boundary. We need additional
ghost cells at x0, x−1, etc on the left of x1, to evaluate the numerical flux at x 1

2
. The

solution values in these ghost cells are determine by the type of boundary condition being
implemented. We consider the following two types of boundary conditions:

• Periodic boundary conditions ensure that the waves exiting the domain from
one end, re-enter the domain from the other end. This type of boundary condition
is imposed by choosing the ghost cell values as U−i = UN−i for i > 0.
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• Transmissive boundary conditions are artificial boundary conditions, designed
to ensure that wave pass out through the boundary without any reflection. This
type of boundary condition is imposed by choosing the ghost cell values as U−i = U1

for i > 0.

The above discussed boundary conditions can be implemented in a dimension-by-
dimension manner for multi-dimensional systems on Cartesian grids.

Finally, the semi-discrete scheme (4.17) is integrated in time using the explicit Strong
Stability Preserving Runge-Kutta 3-stage scheme (SSP-RK3) method [48], with the time
step depending on the convective and viscous contributions [12]:

∆t =
CFL×∆x

λ
, λ = max

i

{
(|ui|+ ai) +

µ

∆xρi

}
,

where the CFL is chosen to be a positive number less than 1. In all test problems, we
consider an ideal gas with γ = 1.4, except when indicated otherwise.

5.8.1 Smooth density wave

We consider a smooth one-dimensional problem for the Euler equations, in which a smooth
periodic density wave is advected with a constant velocity. The initial condition defined
on the domain [0, 2] is given by

ρ = 1 +
1

2
sin4(x), u = 0.5, p = 1,

with periodic boundary conditions. The final time is tf = 0.5 with CFL = 0.5. The
aim of this test case is to validate the convergence rates with various fluxes for the Euler
equations. We evaluate the discrete L1 and L∞ errors of the solution, with the discrete
error norms given by

‖(.)‖Lph =

(
N∑
i=1

|(.)i|ph
) 1

p

for p <∞, ‖(.)‖L∞h = max
i
|(.)i|.

If Θ∆x corresponds to the solution error on a mesh with mesh size ∆x, then the scheme
is said to be k-th order accurate corresponding to a norm ‖.‖ if

‖Θ∆x‖ = C∆xk +O(∆xk+1), (5.54)

where C is a constant that depends on the problem being solved, as well as on the final
time tf . Note that the higher-order terms in (5.54) decay to zero as ∆x → 0 at a
much faster rate, as compared to the lower-order error term C∆xk. Thus, we make the
approximation ‖Θ∆x‖ = C∆xk. Taking a log on both sides, we get

log(‖Θ∆x‖) = logC + k log(∆x). (5.55)

Note that the convergence rate of the scheme is nothing but the slope of the line (5.55).
The errors and convergence rates with different fluxes are given in Tables 5.1-5.3. The

second-order KEPEC, ROE-EC and KEP fluxes and their fourth-order version give the
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expected order of convergence. The order of accuracy drops to first-order for KEPES and
ROE-ES, since the dissipation operators are only first-order accurate. The minmod limiter
is TVD which can lead to clipping of smooth extrema [84, 85]. Thus, the convergence
rate is not completely recovered when the scaled entropy variables are reconstructed with
the minmod limiter in KEPES-TeCNO and ROE-ES-TeCNO. This is more pronounced
when looking at convergence in the L∞ norm.

Furthermore, we note that the magnitude of the errors for a given version of the
KEPEC flux are comparable to the errors of the corresponding version of the ROE-EC flux
and the KEP flux on any fixed mesh. Thus, we might conclude at this stage, that all three
schemes (without artificial dissipation) perform equally well in approximating smooth
solutions for the Euler equations. However, the results for the long-term simulation of an
isentropic vortex discussed in Section 5.8.4 paints a very different picture.

Remark 5.8.1. It is not appropriate to judge the accuracy of a scheme solely on the
basis of the rate of convergence. The value of the error ‖Θ∆x‖ is equally important. For
a particular mesh, the contribution of the higher-order terms in (5.54) may not be small
enough to ignore. We shall return to this point in Section 6.4.

KEPEC KEPEC4

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

100 2.70e-03 - 2.68e-01 - 3.15e-05 - 2.56e-03 -
200 6.80e-04 1.99 6.73e-02 1.99 1.99e-06 3.98 1.61e-04 3.98
400 1.70e-04 1.99 1.68e-02 1.99 1.24e-07 3.99 1.01e-05 3.99
600 7.56e-05 2.00 7.48e-03 1.99 2.46e-08 3.99 2.00e-06 3.99
800 4.25e-05 2.00 4.21e-03 2.00 7.79e-09 3.99 6.36e-07 3.99
1000 2.72e-05 2.00 2.69e-03 2.00 3.19e-09 3.99 2.61e-07 3.99

KEPES KEPES-TeCNO

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

100 3.71e-02 - 4.37e-00 - 5.35e-03 - 1.30e-00 -
200 1.94e-02 0.93 2.32e-00 0.91 1.50e-03 1.83 5.64e-01 1.20
400 9.95e-03 0.96 1.19e-00 0.95 4.02e-04 1.90 2.35e-01 1.26
600 6.69e-03 0.98 8.05e-01 0.97 1.84e-04 1.92 1.40e-01 1.28
800 5.03e-03 0.98 6.07e-01 0.98 1.06e-04 1.92 9.67e-02 1.28
1000 4.04e-03 0.98 4.87e-01 0.98 6.89e-05 1.92 7.24e-02 1.29

Table 5.1: Order of convergence for the advecting density wave problem with fluxes involv-
ing various versions of KEPEC.

5.8.2 Modified Sod test case

This test case describes a shock tube problem of the Sod type [110]. The initial con-
dition on the domain [0, 1] has an initial discontinuity at x0 = 0.3, with the left state
(ρL, uL, pL) = (1.0, 0.75, 1.0) and the right state (ρR, uR, pR) = (0.125, 0.0, 0.1). The com-
putations are made on a mesh with N = 100 cells and transmissive boundary conditions,
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ROE-EC ROE-EC4

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

100 2.70e-03 - 2.68e-01 - 3.15e-05 - 2.56e-03 -
200 6.79e-04 1.99 6.72e-02 1.99 1.99e-06 3.98 1.61e-04 3.98
400 1.70e-04 1.99 1.68e-02 1.99 1.24e-07 3.99 1.01e-05 3.99
600 7.55e-05 1.99 7.47e-03 1.99 2.46e-08 3.99 2.00e-06 3.99
800 4.25e-05 1.99 4.20e-03 2.00 7.79e-09 3.99 6.36e-07 3.99
1000 2.72e-05 2.00 2.69e-03 2.00 3.19e-09 3.99 2.61e-07 3.99

ROE-ES ROE-ES-TeCNO

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

100 3.71e-02 - 4.37e-00 - 5.35e-03 - 1.30e-00 -
200 1.94e-02 0.93 2.32e-00 0.91 1.50e-03 1.83 5.64e-01 1.20
400 9.95e-03 0.96 1.19e-00 0.95 4.02e-04 1.90 2.35e-01 1.26
600 6.69e-03 0.98 8.05e-01 0.97 1.84e-04 1.92 1.40e-01 1.28
800 5.03e-03 0.99 6.07e-01 0.98 1.06e-04 1.92 9.67e-02 1.28
1000 4.04e-03 0.99 4.87e-01 0.99 6.89e-05 1.93 7.24e-02 1.29

Table 5.2: Order of convergence for the advecting density wave problem with fluxes involv-
ing various versions of ROE-EC.

KEP KEP4

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

100 2.58e-03 - 2.57e-01 - 2.98e-05 - 3.03e-03 -
200 6.49e-04 1.99 6.41e-02 2.00 1.89e-06 3.97 1.91e-04 3.99
400 1.62e-04 1.99 1.60e-02 2.00 1.18e-07 3.99 1.20e-05 3.99
600 7.22e-05 1.99 7.11e-03 2.00 2.34e-08 3.99 2.38e-06 3.99
800 4.06e-05 1.99 4.00e-03 2.00 7.44e-09 3.99 7.54e-07 3.99
1000 2.59e-05 1.99 2.56e-03 2.00 3.05e-09 3.98 3.09e-07 3.99

Table 5.3: Order of convergence for the advecting density wave problem with fluxes involv-
ing various versions of KEP.
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up to a final time of tf = 0.2 with CFL=0.4. The exact solution is obtained using the
exact Riemann solver available in [123]. The Roe scheme gives an entropy violating jump
in the expansion region where the flow becomes sonic, as shown in Figure 5.3. This is not
surprising as we have not added any entropy fix. However, both the ROE-ES and KEPES
schemes, being entropy stable, are able to remedy this issue to a large extent. In fact,
the numerical solutions of ROE-ES and KEPES are indistinguishable. The comparison
in Figure 5.4 shows that the high-resolution KEPES-TeCNO scheme is significantly more
accurate, as compared to KEPES.
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Figure 5.3: Modified shock tube problem: first-order schemes.

Note that the entropy stable schemes also give rise to a small jump near the sonic point,
as can be seen in Figure 5.3(b) and 5.4(b). This is because entropy stable schemes also
have a vanishing eigenvalue in the expansion fan. However, due to the entropy conservative
form of the central part of the flux, they do not give rise to an entropy violating shock.
For the Roe scheme, on the other hand, the central part of the flux is a simple arithmetic
average (f(Ui) + f(Ui+1))/2, which is not entropy conservative. Convergence for the
KEPES-TeCNO scheme with mesh refinement is demonstrated in Figure 5.5. Clearly, the
jump near the sonic point reduces with mesh refinement. However, this is not the case
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Figure 5.4: Modified shock tube problem: comparison of first-order and high-order scheme.
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for the Roe scheme, as shown in Figure 5.6, with the entropy violating jump persisting
on all meshes.
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Figure 5.5: Modified shock tube problem (Density): mesh refinement study with KEPES-
TeCNO.
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Figure 5.6: Modified shock tube problem (Density): mesh refinement study with Roe
scheme.

The KEPES-TeCNO scheme can give rise to minor overshoots near shocks. This can
be attributed to the presence of insufficient numerical dissipation in the scheme. However,
with mesh refinement, the overshoot does not grow in size and reduces to a Dirac mass.
In other words, the numerical solution converges to the exact one in the sense of L1.

5.8.3 Low density problem

This problem also corresponds to a one-dimensional shock-tube problem, which is used
to test the ability of schemes to preserve positivity of density and pressure. It has
initial conditions with the left state (ρL, uL, pL) = (1.0,−2.0, 0.4) and the right state
(ρR, uR, pR) = (1.0, 2.0, 0.4). The domain is [0, 1] with the initial discontinuity at x0 = 0.5.
The computations are made on a mesh with N = 100 cells and transmissive boundary
conditions, up to a final time of tf = 0.12 with CFL=0.4. The exact solution consists
of two symmetric rarefaction waves, with the region between the two non-linear waves
being close to vacuum. The original Roe scheme fails for this test case. ROE-ES, KEP-ES
schemes give almost identical results, and are able to preserve the positivity of density and
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pressure, as seen in Figure 5.7. The solution with KEPES-TecNO is significantly better
resolved, as compared to the first-order KEPES scheme. Convergence of the KEPES-
TeCNO scheme with mesh refinement is demonstrated in Figure 5.8.
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Figure 5.7: Low density problem.

5.8.4 Isentropic vortex

This test, proposed by Yee et al. [136], describes the advection of a smooth isentropic
vortex. The initial conditions of the flow on the domain [−5, 5]× [−5, 5] are prescribed as

ρ =

[
1− β2(γ − 1)

8γπ2
exp (1− r2)

] 1
(γ−1)

, u1 = M cos(α)− β(y − yc)
2π

exp

(
1− r2

2

)
,

u2 = M sin(α) +
β(x− xc)

2π
exp

(
1− r2

2

)
, r =

√
(x− xc)2 + (y − yc)2.

The pressure is initialized by p = ργ and β determines the vortex strength. The initial
vortex, centered at (xc, yc), is passively advected in a direction determined by the angle
α, and a velocity determined by the free-stream Mach number M.
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Figure 5.8: Low density tube problem (Density): mesh refinement study with KEPES-
TeCNO.

We choose (xc, yc) = (0, 0), α = 0◦, β = 5 and impose periodic boundary conditions.
Since this problem has a smooth solution, it is ideal to test the long-time simulation
capabilities of the central schemes discussed so far. In particular, we consider the KEP,
KEPEC and ROE-EC fluxes, as well as their fourth-order accurate versions obtained
using the interpolation formula (5.15). We advect the vortex till the final time tf = 100
with CFL =0.5, with two values of the free-stream Mach number: i) M = 0.5, for which
the solution completes 5 periodic cycles at final time, ii) M = 1, for which the solution
completes 10 periodic cycles at final time. The domain is discretized using a mesh with
50 cells in each direction.

The density contour plots for M = 0.5 are shown in Figure 5.9. The solution with
the KEP scheme blows up well before reaching the final time. The ROE-EC scheme
is stable, but the solution profile at the final time is polluted by noise. The KEPEC
scheme, on the other hand, succeeds in preserving the vortex structure till the end of the
simulation, although the vortex has drifted away from the origin due to dispersive errors.
If we consider the fourth-order fluxes, then the solution with KEP4 does not blow-up, but
vortex structure is completely destroyed due to accumulation of errors. The ROE-EC4
and KEPEC4 perform almost identically, both succeeding in preserving the vortex.

The evolution of relative total kinetic energy, i.e., the total kinetic energy scaled by
its initial value, is shown in Figure 5.10. The exact value of relative total kinetic energy
for the isentropic vortex is unity for all time. Although the KEP flux is kinetic energy
preserving, it shows a sudden increase in kinetic energy close to time t = 40, and blows
up soon after. The fourth-order KEP4 flux preserves kinetic energy for a longer time as
compared to KEP, but eventually deviates from its expected behaviour. The ROE-EC
flux performs much better than both the KEP and KEP4 fluxes, despite not satisfying
the form (5.9) required to prove kinetic energy preservation. The KEPEC flux is the best
performer among the second-order fluxes, with the value of relative total kinetic energy
oscillating at close proximity to unity, as time evolves. The evolution of kinetic energy
with ROE-EC4 and KEPEC4 is indistinguishable, with the oscillatory behaviour observed
with their second-order counterparts no longer observable.

The total entropy is conserved in time for smooth solutions (assuming periodic bound-
ary conditions). For the exact solution of the isentropic vortex, the entropy function η
chosen in accordance to (3.8) is identically zero, since s ≡ 0. Thus, the total entropy is
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(a) KEP (t ≈ 57) (b) ROE-EC (t = 100) (c) KEPEC (t = 100)

(d) KEP4 (t = 100) (e) ROE-EC4 (t = 100) (f) KEPEC4 (t = 100)

Figure 5.9: Isentropic vortex with M = 0.5, 50× 50 cells: density contours.
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Figure 5.10: Evolution of relative total kinetic energy for isentropic vortex with M = 0.5,
50× 50 cells.
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identically zero for all time. The evolution of total entropy with the various numerical
fluxes is shown in Figure 5.11. While the entropy increases for KEP and KEP4, the
entropy conservative fluxes ROE-EC, KEPEC and their fourth-order versions are able to
conserve the total entropy till the final time.
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(b) Second-order (zoomed)
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(c) Fourth-order
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Figure 5.11: Evolution of total entropy for isentropic vortex with M = 0.5, 50× 50 cells.

We perform a similar analysis with the Mach number chosen as M = 1. The density
contour plots for this set-up are shown in Figure 5.12. The solution with KEP and KEP4
schemes blow-up before reaching the final time. The solution profiles with ROE-EC and
ROE-EC4 are much worse compared to the previous set-up, with the vortex structure with
ROE-EC severely polluted by noise. However, both KEPEC and KEPEC4 are still able
to preserve the vortex structure, till the end of the simulation. The evolution of relative
total kinetic energy, shown in Figures 5.13, indicate that the ability of the ROE-EC and
ROE-EC4 schemes to preserve kinetic energy has degraded. However, both KEPEC and
KEPEC4 perform as well as they did for M = 0.5. At first glance, the evolution of total
entropy shown in Figure 5.14 indicates that ROE-EC, KEPEC and their fourth-order
versions are still able to conserve entropy equally well till final time. However, zooming
in further shows that this is true for KEPEC and KEPEC4, but not for ROE-EC and
ROE-EC4.
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(a) KEP (t ≈ 55) (b) ROE-EC (t = 100) (c) KEPEC (t = 100)

(d) KEP4 (t ≈ 71) (e) ROE-EC4 (t = 100) (f) KEPEC4 (t = 100)

Figure 5.12: Isentropic vortex with M = 1, 50× 50 cells: density contours.
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Figure 5.13: Evolution of relative total kinetic energy for isentropic vortex with M = 1,
50× 50 cells.
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(b) Second-order (zoomed)

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l 
en

tr
op

y

1e−2

ROE-EC4
KEPEC4
KEP4

(c) Fourth-order

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0

To
ta

l 
en

tr
op

y

1e−7

ROE-EC4
KEPEC4
KEP4

(d) Fourth-order (zoomed)

Figure 5.14: Evolution of total entropy for isentropic vortex with M = 1, 50× 50 cells.
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The results with M = 0.5 indicate that the entropy conservative nature of the ROE-
EC and KEPEC fluxes makes them (and their high-order version) more accurate for
long-time simulation, as compared to the KEP flux that is only kinetic energy preserving.
However, we can infer from the M = 1 results that KEPEC flux, which is also kinetic
energy preserving, is more accurate as compared to the ROE-EC flux. Thus we make the
following conjecture.

Conjecture. A numerical flux for the Euler equations which is both entropy conservative
and kinetic energy preserving, is more accurate for long-time simulations of smooth solu-
tions, as compared to a flux that is either entropy conservative or kinetic energy preserving,
but not both.

Unfortunately, we can not give a formal proof to this conjecture at present. This
conjecture needs to validated with further experiments, which will be the topic of future
work.

5.8.5 Shock vortex interaction

This problem consists of the interaction of a left-moving shock wave with a right-moving
vortex [35]. The initial shock discontinuity on the domain [0, 1]× [0, 1] is given by

U0(x) =

{
UL if x < 0.5

UR if x > 0.5
,

where the left state is given by (ρL, u1,L, u2,L, pL) = (1,
√
γ, 0, 1) while the right state is

given by

pR = 1.3, ρR = ρL

(
γ − 1 + (γ + 1)pR
γ + 1 + (γ − 1)pR

)
u1,R =

√
γ +
√

2

(
1− pr√

γ − 1 + pR(γ + 1)

)
, u2,R = 0.

The left state UL is superposed onto a vortex described by the following perturbations
in the velocity, temperature and physical entropy respectively

δu1 = ε
(y − yc)
rc

exp
(
β(1− r2)

)
, δu2 = −ε(x− xc)

rc
exp

(
β(1− r2)

)
,

δθ = −γ − 1

4βγ
ε2 exp

(
2β(1− r2)

)
, δs = 0,

where r2 = ((x−xc)2 + (y− yc)2)/r2
c . Note that the perturbation describes a steady isen-

tropic vortex solution for the two-dimensional Euler equations. The various parameters of
the perturbation are chosen as ε = 0.3, rc = 0.05, β = 0.204 and (xc, yc) = (0.25, 0.5). The
initial profile of solution is shown in Figure 5.15(a). The domain is discretized with 200
cells in each direction with transmissive boundary conditions, and the final time is chosen
as tf = 0.35 with CFL=0.5. The final numerical solutions are shown in Figure 5.15(b)-(d).
The KEPES and ROE-ES schemes give comparable results, but the shock profile is quite
diffused. Sharper profiles are obtained with the higher-order KEPES-TeCNO scheme.
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(a) Initial profile (b) ROE-ES

(c) KEPES (d) KEPES-TeCNO

Figure 5.15: Density profiles for shock-vortex interaction.
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5.8.6 3D Taylor-Green vortex

We now test the DNS capabilities of the KEPEC flux, by considering the three-dimensional
viscous Taylor-Green vortex (TGV3D) problem [75]. The initial flow field on the domain
Ω = [0, 2Lπ]3 is given by

u = V0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
,

v = −V0 cos
(x
L

)
sin
( y
L

)
cos
( z
L

)
,

w = 0,

p = p0 +
ρ0V

2
0

16

(
cos

(
2x

L

)
+ cos

(
2y

L

))(
cos

(
2z

L

)
+ 2

)
,

with periodic boundary conditions. Starting from a single large scale of the initial con-
ditions in terms of sine and cosine waves, the flow rapidly evolves into fully homogenous
turbulence. The kinetic energy generated by the mean flow is transferred down the energy
cascade by the non-linear interactions, and finally dissipated by the viscous forces of the
eddies at the smallest scale, also known as the Kolmogorov scale [39]. Thus, accurate rep-
resentation of the kinetic energy and viscous stresses by the numerical scheme is essential
to observe the correct decay of energy.

For the current problem, the Reynolds number of the flow is Re = 1600, with a Mach
number of M = 0.1. The mean free-stream velocity is V0 = 1, the domain length scale is
L = 1, the initial density is ρ0 = 1, the gas constant is taken as R = 1 and the Prandtl
number as Pr = 0.71. Based on these values, the remaining parameters are chosen as
follows

p0 =
V 2

0 ρ0

M2γ
, µ =

LV0ρ0

Re
, cp =

Rγ

γ − 1
,

with the coefficient of heat conductance κ chosen according to (3.12). The physical
duration of the computation is based on the characteristic convective time tc = V0/L,
and is set to tf = 20tc. We consider two grid sizes for our numerical simulations, namely
1283 and 2563. The mesh is under-resolved for these grid sizes, and thus unable to capture
the flow features at the smallest scales. We use a reference solution corresponding to an
incompressible flow, obtained using a dealiased pseudo-spectral code [22, 128] on a 5123

grid, on which all scales are well resolved. However, solving the Navier-Stokes equations
on a grid of size 5123 is very demanding on computational resources. Thus, we wish to test
the performance of the KEPEC flux in under-resolved scenarios. We use the notations A,
B and C to denote the meshes with sizes 1283, 2563 and 5123 respectively.

The first quantity of interest is the temporal evolution of the non-dimensional total
kinetic energy

EK =
1

ρ0|Ω|V 2
0

∫
Ω

ρ
|u|2
2

dx.

Recall from Section 3.3, that the decay rate of (non-dimensional) total kinetic energy,
which we denote by ε = −dEK

dt , is the sum of two components

ε1 =
L

ρ0|Ω|V 3
0

∫
Ω

3∑
i=1

3∑
j=1

τij∂xjui dx, ε2 = − L

ρ0|Ω|V 3
0

∫
Ω

p∇·u dx.
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Since the flow is nearly incompressible, the main contribution is expected to be from ε1.
We are also interested in the temporal evolution of the total enstrophy

ε =
L2

ρ0|Ω|V2
0

∫
Ω

ρ
|ω|2

2
dx,

which is obtained in terms of the vorticity of the flow ω = ∇ × u. This is indeed
an important diagnostic tool, as it can be shown that ε = 2µε/ρ0 holds exactly for
incompressible flows, and approximately for compressible flow at low Mach numbers.

In Section 5.6, we described two ways of discretizing the viscous flux for the multi-
dimensional Navier-Stokes equations. The first formulation ensured that the viscous fluxes
dissipated the total kinetic energy in a consistent manner. The second formulation ensured
the entropy stability of the scheme. We use the notations NS-KEP and NS-ES to indicate
the first and second formulation respectively. The DNS of compressible Navier–Stokes
equations seeks to resolve all physically relevant time and length scales associated with
turbulence. Resolution of these phenomena requires strict temporal error tolerances.
Thus, we use a fourth-order Runge-Kutta scheme for time-integration, with CFL=0.1.

Extending the discussion in Section 5.7.3 to three-dimensions, the decay rates of kinetic
energy are approximated directly using the numerical fluxes, in the following manner

ε1 ≈ −
∑
i,j,k

[
1

2
|u|2i,j,k

(
F x,ρ

i+ 1
2
,j,k
− F x,ρ

i− 1
2
,j,k

∆x
+
F y,ρ

i,j+ 1
2
,k
− F y,ρ

i,j− 1
2
,k

∆y
+
F z,ρ

i,j,k+ 1
2

− F z,ρ

i,j,k− 1
2

∆z

)]
|Ωh|

+
∑
i,j,k

[〈
ui,j,k,F

x,m

i+ 1
2
,j,k
− Fx,m

i− 1
2
,j,k

〉
∆x

+

〈
ui,j,k,F

y,m

i,j+ 1
2
,k
− Fy,m

i,j− 1
2
,k

〉
∆y

+

〈
ui,j,k,F

z,m

i,j,k+ 1
2

− Fz,m

i,j,k− 1
2

〉
∆z

]
|Ωh|,

ε2 ≈
∑
i,j,k

[〈
[T xyzu]i+ 1

2
,j+ 1

2
,k+ 1

2
,Gx,m

i+ 1
2
,j+ 1

2
,k+ 1

2

〉
+
〈

[T yxzu]i+ 1
2
,j+ 1

2
,k+ 1

2
,Gy,m

i+ 1
2
,j+ 1

2
,k+ 1

2

〉
+
〈

[T zxyu]i+ 1
2
,j+ 1

2
,k+ 1

2
,Gz,m

i+ 1
2
,j+ 1

2
,k+ 1

2

〉]
|Ωh|,

where T xyz, T yxz, T zxy are the three-dimensional extensions of the operators T xy, T yx,
while |Ωh| = ∆x∆y∆z is the volume of each cell. We of course need to multiply the ap-
proximations by the factor L/(ρ0|Ω|V2

0) to non-dimensionalize them. The total enstrophy
is approximated by

ε ≈ 1

2

∑
i,j,k

[
ρi+ 1

2
,j+ 1

2
,k+ 1

2
|ω|2

i+ 1
2
,j+ 1

2
,k+ 1

2

]
|Ωh|,

where the nodal values of density is obtained using the averaging (5.38), while the vorticity
is approximated at the nodes by

ωi+ 1
2
,j+ 1

2
,k+ 1

2
=

[T yxzu3]i+ 1
2
,j+ 1

2
,k+ 1

2
− [T zxyu2]i+ 1

2
,j+ 1

2
,k+ 1

2

[T zxyu1]i+ 1
2
,j+ 1

2
,k+ 1

2
− [T xyzu3]i+ 1

2
,j+ 1

2
,k+ 1

2

[T xyzu2]i+ 1
2
,j+ 1

2
,k+ 1

2
− [T yxzu1]i+ 1

2
,j+ 1

2
,k+ 1

2

 ,
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which requires the value of u at the cell-centers. Note that the approximation for ε needs
to be scaled by the factor L2/(ρ0|Ω|V2

0) to non-dimensionalize it.
We first simulate the test case using a simple central average to approximate the

inviscid flux, i.e.,

Fx
i+ 1

2
,j,k

=
f1(Ui,j,k) + f1(Ui+1,j,k)

2
,

with similar expression for the inviscid flux components in the y and z-directions. However,
as shown in Figure 5.16, the numerical solution of the Taylor-Green vortex blows up after
a finite time (on mesh B), irrespective of the type of discretization chosen for the viscous
fluxes. This demonstrates that the central inviscid numerical fluxes must be carefully
constructed to compute turbulent flows, in tandem with suitable viscous discretizations.

0 5 10 15 20
t

0.04

0.06

0.08

0.10

0.12

E
K

spectral (C)

Average flux (B)

Figure 5.16: Evolution of kinetic energy with a simple central flux on mesh B for the
TGV3D problem. The solution blows up in finite time.

The KEPEC scheme is able to capture the evolution of total kinetic energy and its
decay rate fairly well, as compared to the pseudo-spectral results (see Figure 5.17 and
5.18). The solutions improve with mesh refinement, and the evolution of the global
quantities with NS-ES and NS-KEP discretizations are comparable. Figure 5.19 reiterates
the fact that the contribution of pressure forces to the decay rate kinetic energy is quite
small as compared to viscous forces, for low Mach number flows. The numerical solution
with the KEPEC flux is unable to capture the peak values of the decay rate predicted
by the pseudo-spectral result. This becomes even more evident when we consider the
evolution of total enstrophy, as shown in Figure 5.20. A possible explanation for this
behaviour, is the fact that the mesh is under-resolved, and thus we are unable to capture
the smallest scales which play a key role in the destruction of kinetic energy. Nevertheless,
the numerical scheme with the KEPEC flux is able to capture the evolution dynamics
reasonably well. We also note from Figure 5.20(b), that the NS-KEP discretization does
marginally better in capturing the peak value as compared to the NS-ES formulation.

In Figure 5.21, we plot the iso-contours of the magnitude of dimensionless vortic-
ity L|ω|/V0, on the periodic face x = 0 at time t = 8tc. Although the contour plots
with the KEPEC flux seem a bit noisy, they still capture the key features predicted by
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Figure 5.17: Evolution of kinetic energy with the KEPEC flux for the TGV3D problem
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Figure 5.18: Decay rate of kinetic energy with the KEPEC flux for the TGV3D problem.
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Figure 5.19: Components of kinetic energy decay with the KEPEC flux for the TGV3D
problem; (a) contribution due to viscous forces, (b) contribution due to pressure forces.
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Figure 5.20: Evolution of total enstrophy with the KEPEC flux for the TGV3D problem.
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the pseudo-spectral results. We expect the solutions to improve, by either refining the
mesh, or applying a suitable filtering technique to the solutions. The iso-contours of
the z-component of vorticity are shown in Figure 5.22, to illustrate the vortical motion,
transition to turbulence and turbulent decay of the flow.

(a) Pseudo-spectral (C) (b) NS-KEP (B) (c) NS-ES (B)

Figure 5.21: Iso-contours of the magnitude of dimensionless vorticity L|ω|/V0 on the periodic
face x = 0 at time t = 8tc with contour levels = 1, 5, 10, 20 ,30.
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(a) t = 5tc (b) t = 10tc

(c) t = 15tc (d) t = 20tc

Figure 5.22: Iso-surfaces of z-vorticity with NS-KEP on a mesh B.
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6. A sign-preserving WENO reconstruc-
tion

In Chapter 5, we briefly discussed the sign-preserving ENO interpolation procedure, which
can be used to construct high-order entropy stable finite difference schemes. In this
chapter, we propose a third-order WENO-type reconstruction which is sign-preserving.
The results with the new WENO reconstruction for scalar conservation laws, has been
published in [38].

6.1 WENO reconstruction

We begin by describing the basic idea of a third-order WENO procedure, which uses a
convex combination of second-order linear reconstructions. For the convenience of nota-
tion, we demonstrate the methodology in one-dimension. It can be extended to higher
dimensions by using a dimension-by-dimension approach.

The one-dimensional domain is discretized using a uniform mesh, with mesh size ∆x =
h. Consider the stencil shown in Figure 6.1 corresponding to the reconstructions at xi+ 1

2
.

We choose the function v(x) to demonstrate the reconstruction procedure.

i+1i i+2i-1

i + 1/2 i + 3/2i - 1/2 i + 5/2i - 3/2

Figure 6.1: Stencil for reconstruction.

Reconstruction from the left: We first consider the reconstruction from the left side
of the interface xi+ 1

2
. The two stencils considered by ENO-2 to construct linear polynomial

approximations in cell Ii, are

S0
i = {xi, xi+1}, S1

i = {xi−1, xi}.

The corresponding linear polynomials and their evaluations at xi+ 1
2
are given by

p
(0)
i (x) = vi

(x− xi+1)

(xi − xi+1)
+ vi+1

(x− xi)
(xi+1 − xi)

=⇒ v
(0),−
i+ 1

2

=
vi
2

+
vi+1

2
,

p
(1)
i (x) = vi−1

(x− xi)
(xi−1 − xi)

+ vi
(x− xi−1)

(xi − xi−1)
=⇒ v

(1),−
i+ 1

2

= −vi−1

2
+

3vi
2
.

79



Chapter 6. A sign-preserving WENO reconstruction

Each of the above reconstructions at the interface xi+ 1
2
, are second-order accurate.

Weighting each of these with non-negative weights w0,i+ 1
2
and w1,i+ 1

2
, respectively, we

obtain the reconstructed value

v−
i+ 1

2

:= w0,i+ 1
2

(vi
2

+
vi+1

2

)
+ w1,i+ 1

2

(
−vi−1

2
+

3vi
2

)
. (6.1)

The weights must be chosen such that third-order accuracy is achieved. Thus, we require
that

v(xi+ 1
2
) +O(h3) = v−

i+ 1
2

= w0,i+ 1
2

(vi
2

+
vi+1

2

)
+ w1,i+ 1

2

(
−vi−1

2
+

3vi
2

)
= w0,i+ 1

2

(
v(xi+ 1

2
) +

1

8
v′′(xi+ 1

2
)h2 +O(h3)

)
+ w1,i+ 1

2

(
v(xi+ 1

2
)− 3

8
v′′(xi+ 1

2
)h2 +O(h3)

)
,

which lead to the following constraints on the weights:

w0,i+ 1
2

+ w1,i+ 1
2

= 1, (6.2a)

C1 :=
w0,i+ 1

2

8
−

3w1,i+ 1
2

8
= O(h). (6.2b)

Reconstruction from the right: We now consider the reconstruction from the right
at the interface xi+ 1

2
, which requires the stencils

S̃0 = {xi+1, xi+2}, S̃1 = {xi, xi+1}

to obtain linear polynomial approximations in cell Ii+1. The corresponding polynomial
and their evaluations at xi+ 1

2
are

p̃(0)(x) = vi+1
(x− xi+2)

(xi+1 − xi+2)
+ vi+2

(x− xi+1)

(xi+2 − xi+1)
=⇒ v

(0),+

i+ 1
2

=
3vi+1

2
− vi+2

2
,

p̃(1)(x) = vi
(x− xi+1)

(xi − xi+1)
+ vi+1

(x− xi)
(xi+1 − xi)

=⇒ v
(1),+

i+ 1
2

=
vi
2

+
vi+1

2
.

Let the weights in this case be denoted by w̃0,i+ 1
2
and w̃1,i+ 1

2
. As before, we set

v+
i+ 1

2

:= w̃0,i+ 1
2

(
−vi+2

2
+

3vi+1

2

)
+ w̃1,i+ 1

2

(vi
2

+
vi+1

2

)
, (6.3)

and we require

v(xi+ 1
2
) +O(h3) = w̃0,i+ 1

2

(
v(xi+ 1

2
)− 3

8
v′′(xi+ 1

2
)h2 +O(h3)

)
+ w̃1,i+ 1

2

(
v(xi+ 1

2
) +

1

8
v′′(xi+ 1

2
)h2 +O(h3)

)
.
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This enforces the following constraints on the weights:

w̃0,i+ 1
2

+ w̃1,i+ 1
2

= 1, (6.4a)

C2 := −
3w̃0,i+ 1

2

8
+
w̃1,i+ 1

2

8
= O(h). (6.4b)

The weights w1,i+ 1
2
, w1,i+ 1

2
, w̃1,i+ 1

2
, w̃1,i+ 1

2
must be chosen in accordance to (6.2) and

(6.4), to ensure that the desired consistency and accuracy of the reconstruction is achieved.
For convenience of notation, we drop the i+ 1

2
subscript in the weights wherever it is clear

that we are referring to the interface xi+ 1
2
.

6.2 Properties

We list the crucial properties that the reconstruction procedure needs to satisfy, including
the sign-property.

6.2.1 Consistency

Using (6.2b) and (6.4b), we rewrite the weights as

w0 =
3

4
+ 2C1, w1 =

1

4
− 2C1, w̃0 =

1

4
− 2C2, w̃1 =

3

4
+ 2C2.

To ensure that the weights are non-negative and that (6.2a) and (6.4a) are satisfied, we
require the following consistency condition:

0 6 w0, w1, w̃0, w̃1 6 1, (P1)

or equivalently,

−3

8
6 C1, C2 6

1

8
. (P1’)

6.2.2 Sign property

The jump in the reconstructed variables can be written as

JvKi+ 1
2

=
1

2

[
w̃0(1− θ−i+1) + w1(1− θ+

i )
]

∆vi+ 1
2
, (6.5)

where θ−i+1 and θ+
i are the jump ratios defined by (4.15). Thus, the following is an

equivalent formulation of the sign property whenever ∆vi+ 1
2
6= 0:

[
w̃0(1− θ−i+1) + w1(1− θ+

i )
]
> 0. (P2)
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Chapter 6. A sign-preserving WENO reconstruction

6.2.3 Negation symmetry

By negation symmetry, we mean that the weights are not biased towards positive or
negative solution values. In other words, the weights should remain unchanged under the
transformation v 7→ −v. The jumps accordingly transform as

∆vi+ 1
2
7→ −∆vi+ 1

2
∀ i ∈ Z.

However, the jump ratios θ−i or θ+
i remain unchanged. A sufficient condition to enforce

negation symmetry is to choose C1, C2 as functions of θ+
i , θ

−
i+1:

C1 = C1(θ+
i , θ

−
i+1), C2 = C2(θ+

i , θ
−
i+1). (P3)

6.2.4 Mirror property

If we mirror the solution about the interface xi+ 1
2
, we would like to ensure that the weights

also get mirrored about xi+ 1
2
. The mirroring transforms the jump ratios as

θ−i+1 ←→ θ+
i .

It is straightforward to see that the weights must transform as

w0 ←→ w̃1, w1 ←→ w̃0.

Assuming that the the form (P3) ensuring negation symmetry holds, the mirror property
is true if and only if

C1(a, b) = C2(b, a) ∀ a, b ∈ R. (P4)

Remark 6.2.1. There are other invariants corresponding to the transformation v 7→ −v,
such as |∆vi+ 1

2
| or (|vi|+ |vi+1|). Thus, one can also choose

C1 = C1(θ+
i , θ

−
i+1, |∆vi+ 1

2
|, (|vi|+ |vi+1|)), C2 = C2(θ+

i , θ
−
i+1, |∆vi+ 1

2
|, (|vi|+ |vi+1|)), (P3′)

to ensure negation symmetry holds. These terms are also invariant if the solution is
mirrored about the interface xi+ 1

2
. Assuming that the form described by (P3′) holds, a

generalized sufficient condition for mirror symmetry is given by

C1(a, b, c, d) = C2(b, a, c, d) ∀ a, b, c, d ∈ R, c, d > 0. (P4′)

6.2.5 Inner jump condition

In addition to the sign property, we would like the reconstructed variables to satisfy the
inner jump condition in each cell i:

sign(v−
i+ 1

2

− v+
i− 1

2

) = sign(∆vi+ 1
2
) = sign(∆vi− 1

2
),

whenever the second equality holds. This property ensures that the monotonicity of the
solution is preserved. The second-order ENO reconstruction satisfies this property, while
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6.2. Properties

it need not hold true for higher order ENO. Recalling the definitions (6.1), (6.3) of v−
i+ 1

2

and v+
i− 1

2

, we obtain

v−
i+ 1

2

− v+
i− 1

2

= w0,i+ 1
2

(vi
2

+
vi+1

2

)
+ w1,i+ 1

2

(
−vi−1

2
+

3vi
2

)
− w̃0,i− 1

2

(
−vi+1

2
+

3vi
2

)
− w̃1,i− 1

2

(vi
2

+
vi−1

2

)
= ∆vi+ 1

2

w0,i+ 1
2

+ w̃0,i− 1
2

2
+ ∆vi− 1

2

w1,i+ 1
2

+ w̃1,i− 1
2

2
.

By the assumption (P1) of non-negativity of the weights, the coefficients of ∆vi− 1
2
and

∆vi+ 1
2
in the above expression are non-negative, and hence the inner jump condition is

automatically satisfied.

6.2.6 Accuracy

In general, conditions (6.2b) and (6.4b) require C1 and C2 to beO(h) for smooth solutions.
However, this condition can be relaxed in scenarios in which v′′(x̂) = 0, for some x̂
such that |x̂ − xi+ 1

2
| = O(h). Figure 6.2 depicts a few situations in which this can

happen. Assuming sufficient regularity on the solution, the following is true in these

xi xi+1

xi+ 1
2

(a)

xi xi+1

xi+ 1
2

(b)

xi xi+1

xi+ 1
2

(c)

xi xi+1

xi+ 1
2

(d)

xi xi+1

xi+ 1
2

(e)

xi xi+1

xi+ 1
2

(f)

Figure 6.2: Special cases when v′′(x̂) = 0.

special scenarios:

v′′(xi+ 1
2
) = v′′(x̂) + (xi+ 1

2
− x̂)v′′′(x̂) +O(h2) = O(h).

This in turn implies that each of the linear polynomials used for reconstruction, gives
a third-order accurate approximation of the solution at xi+ 1

2
. Thus, (6.2b) and (6.4b)
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Chapter 6. A sign-preserving WENO reconstruction

become redundant. In other words, the reconstruction is third-order accurate provided

C1, C2 =

{
O(h), in GC
no order restriction, in SC

, (P5)

where we use the abbreviations GC and SC to denote general cases and special cases
respectively.

6.2.7 The feasible region

In order to choose weights satisfying (P1)–(P5), we first analyse how the weights behave
under the above constraints. We will look at six different scenarios, depending on the
values of θ+

i , θ
−
i+1. In each scenario we will try to determine the feasible region, which cor-

responds to the region where the weights satisfy (P1) and (P2). The remaining properties
will be considered in Section 6.3, while trying to construct explicit weights. We define the
quantities

ψ+
i+ 1

2

:=
(1− θ−i+1)

(1− θ+
i )

, ψ−
i+ 1

2

:=
1

ψ+
i+ 1

2

.

The i+ 1
2
subscript will be dropped whenever it is obvious that we are referring to the

interface i+ 1
2
. We also introduce the notation

L :=

{
C1

1
8

(1+ψ+)
+ C2

1
8

(1+ψ−)
, if ψ+ 6= −1

C1 − C2 + 1, if ψ+ = ψ− = −1.

Furthermore, we denote the open box
(
−3

8
, 1

8

)
×
(
−3

8
, 1

8

)
by B. Recall that the consistency

constraint (P1’) requires that (C1, C2) ∈ B.

Case 1: θ+
i , θ

−
i+1 > 1

The qualitative nature of the (smooth) solution for this case is indicated in Figure 6.3.
The solution is clearly not strictly convex or concave in the stencil under consideration,
even if the solution is more oscillatory than that shown in Figure 6.3. Thus, we are in
the SC regime, which implies that no order of accuracy restrictions must be imposed on
C1, C2. To ensure that (P2) holds, we need

w̃0 = w1 = 0 ⇐⇒ C1 = C2 =
1

8
.

Note that this leads to precisely the ENO-2 stencil selection, which is suitable for discon-
tinuous solutions as well.

Case 2: θ+
i < 1, θ−i+1 > 1

In this case we have
ψ+ < 0, 1 + ψ+ < 1.
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xi xi+1

xi+ 1
2

(a)

xi xi+1

xi+ 1
2

(b)

Figure 6.3: Possible scenarios for Case 1.

C1

C2

1
8

1
8

−3
8

−3
8

(1+ψ+)
8

(1+ψ−)
8

L = 1

(a) ψ+ = −0.5 ∈ (−1, 0)

C1

C2

1
8

1
8

−3
8

−3
8

(1+ψ+)
8

(1+ψ−)
8

L = 1

(b) ψ+ = −1.5 ∈ (−∞,−1)

Figure 6.4: Feasible region for Case 2 (dark grey) and Case 3 (light grey).

Case 2 falls into the GC regime. Thus, we must choose C1 and C2 carefully so as not to
violate the accuracy condition. The sign property (P2) will hold if

w1 > −w̃0ψ
+ ⇐⇒

(
1

4
− 2C1

)
> −

(
1

4
− 2C2

)
ψ+ ⇐⇒ C1 + ψ+C2 6

1

8
(1 + ψ+).

Thus, we have the following constraints on C1, C2:

−3

8
< C1, C2 <

1

8
,

L 6 1 if − 1 6 ψ+ < 0,

L > 1 if ψ+ < −1.

The feasible region for C1, C2 is shown in Figure 6.4 (in dark grey).
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Chapter 6. A sign-preserving WENO reconstruction

Case 3: θ+
i > 1, θ−i+1 < 1

Similiar to case 2, we have
ψ+ < 0, 1 + ψ+ < 1,

with the solutions falling into the GC regime in general. The sign property holds if

w̃0 > −w1ψ
− ⇐⇒

(
1

4
− 2C2

)
> −

(
1

4
− 2C1

)
ψ− ⇐⇒ C1 + ψ+C2 >

1

8
(1 + ψ+).

Comparing the last equivalent condition above with that observed for case 2, we see that
the inequality has been flipped. Thus, we have the following constraints on C1, C2:

−3

8
< C1, C2 <

1

8
,

L > 1 if − 1 6 ψ+ < 0,

L 6 1 if ψ+ < −1.

The feasible region for C1, C2 is shown in Figure 6.4 (in light grey).

Remark 6.2.2. Any point in {(C1, C2) : L = 1} ∩ B, satisfies the constraints in cases 2
and 3. This fact will be exploited in constructing explicit weights.

Case 4: θ−i+1 = 1

In this case the solution either has a linear region, or is oscillatory without being strictly
convex or concave. Thus, this case falls in the SC regime. In order to satisfy (P2), we
require w1 to have the same sign as (1− θ+

i ).
If θ+

i 6 1, then (C1, C2) can be chosen as any point in B. However, if θ+
i > 1, then

to satisfy (P1) and (P2), we must take C1 = 1
8
, while C2 can be any value in

[
−3

8
, 1

8

]
.

This would lead to w0 = 1, w1 = 0 when θ+
i > 1, which is identical to the ENO-2 stencil

selection.

Case 5: θ+
i = 1

This case is similar to case 4, with the values of θ+
i and θ−i+1 interchanged. If θ−i+1 6 1,

then (C1, C2) can be chosen as any point in B. If θ−i+1 > 1, then we must take C2 = 1
8

while C1 can be any value in
[
−3

8
, 1

8

]
.

Case 6: θ+
i , θ

−
i+1 < 1

In this final case, we have
ψ+ > 0, 1 + ψ+ > 1.

Note that this was true in case 1 as well. By an argument similar to the one made in case
1, we can show that case 6 falls into the SC regime (see Figure 6.5). Furthermore, the
sign property is satisfied as long as the consistency condition (P1) holds true.
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xi xi+1

xi+ 1
2

(a)

xi xi+1

xi+ 1
2

(b)

xi xi+1

xi+ 1
2

(c)

Figure 6.5: Possible scenarios for Case 6.

6.3 Explicit weights: SP-WENO

We now make an explicit choice for the weights, based on the case-by-case analysis done
in Section 6.2.7. Recall that from an accuracy point of view, the optimal choice of weights
is (w0, w1) = (3/4, 1/4) and (w̃0, w̃1) = (1/4, 3/4), or equivalently, (C0, C1) = (0, 0). However,
the point (C0, C1) = (0, 0) in many cases does not lie in the feasible region (see Section
6.2.7).

For cases 2 and 3, we choose (C0, C1) to be the point in {L = 1} ∩ B, by virtue of
Remark 6.2.2. Furthermore, C0 and C1 must both be of order O(h) in these two cases,
in order to satisfy (P5). Thus, we choose (C0, C1) to be the point on L = 1 closest to the
origin, as measured in the Euclidean norm:

C1(θ+
i , θ

−
i+1) =

{
1
8

(
f+

(f+)2+(f−)2

)
if ψ+ 6= −1

0 otherwise,
C2(θ+

i , θ
−
i+1) = C1(θ−i+1, θ

+
i ), (6.6)

where we have defined

f+(θ+
i , θ

−
i+1) :=

{
1

1+ψ+ if θ+
i 6= 1, ψ+ 6= −1

1 otherwise,
f−(θ+

i , θ
−
i+1) := f+(θ−i+1, θ

+
i ).

For smooth functions v we can show that (1 + ψ+), (1 + ψ−) = O(h) in the GC regime,
so C1, C2 = O(h) for cases 2 and 3, and hence (P5) is satisfied.

For cases 1 and 6, the point on the line L = 1 closest to the origin need not lie in the
feasible region. Furthermore, ψ+ and ψ− need not be defined for cases 4 and 5, thus the
line L = 1 is not defined. Note that for these remainder cases, there is no order restriction
on (C0, C1). Going through a case-by-case analysis, we propose the following extension of
(6.6):

C1(θ+
i , θ

−
i+1) =


1
8

(
f+

(f+)2+(f−)2

)
if θ+

i 6= 1, ψ+ < 0, ψ+ 6= −1

0 if θ+
i 6= 1, ψ+ = −1

−3
8

if θ+
i = 1 or ψ+ > 0, |θ+

i | 6 1
1
8

if ψ+ > 0, |θ+
i | > 1

, (6.7)

and C2(θ+
i , θ

−
i+1) = C1(θ−i+1, θ

+
i ), as before.
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By virtue of lying in the feasible region, the above choices of C1, C2 automatically
satisfy the consistency and sign properties (P1), (P2). By definition they satisfy the
negation and mirror symmetry properties (P3) and (P4), and through a case-by-case
analysis, it can be seen that the weights also satisfy the accuracy condition (P5). We
refer to this third-order WENO-type reconstruction method as SP-WENO.

Remark 6.3.1. In the above discussion, we have assumed that ∆vi+ 1
2
6= 0. If ∆vi+ 1

2
= 0,

then the weights are chosen to be w1 = w̃0 = 0, leading to JvKi+ 1
2

= 0.

Remark 6.3.2. It can be shown that choosing C1, C2 to be any point on the line L = 1,
ensures that the reconstructed states are equal, i.e. v−

i+ 1
2

= v+
i+ 1

2

. Thus, JvKi+ 1
2

= 0 for
cases 2 and 3.

6.3.1 Stability estimates

We now show that it is possible to estimate the reconstructed jumps in terms of the
original jumps. In case 1, we have θ+

i , θ
−
i+1 > 1 and w1 = w̃0 = 0. Thus, the reconstructed

states

v−
i+ 1

2

= v+
i+ 1

2

=
1

2
(vi + vi+1),

have a zero jump. This is also true for cases 2–3, by virtue of Remark 6.3.2. Proceeding
in a similar manner for cases 4–6, we find that the jump in reconstructed states is

JvKi+ 1
2

=



0 if

θ+
i > 1 and θ−i+1 > 1 (case 1)
θ+
i < 1 and θ−i+1 > 1 (case 2)
θ+
i > 1 and θ−i+1 < 1 (case 3)
|θ+
i | > 1 and θ−i+1 = 1 (case 4)

θ+
i = 1 and |θ−i+1| > 1 (case 5)
θ+
i < −1 and θ−i+1 < −1 (case 6)


Ω0

1
2
(∆vi+ 1

2
−∆vi− 1

2
) if

|θ+
i | 6 1 and θ−i+1 = 1 (case 4)
−1 6 θ+

i < 1 and θ−i+1 < −1 (case 6)

}
Ω1

1
2
(∆vi+ 1

2
−∆vi+ 3

2
) if

θ+
i = 1 and |θ−i+1| 6 1 (case 5)
θ+
i < −1 and − 1 6 θ−i+1 < 1 (case 6)

}
Ω2

∆vi+ 1
2
− 1

2
(∆vi− 1

2
+ ∆vi+ 3

2
) if −1 6 θ+

i , θ
−
i+1 < 1 (case 6)

}
Ω3

.

Lemma 6.3.1 (Bounds on jumps). We have the following estimate on the jump in the
SP-WENO reconstruction: ∣∣∣JvKi+ 1

2

∣∣∣ 6 2
∣∣∣∆vi+ 1

2

∣∣∣ ∀ i ∈ Z. (6.8)
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Proof. If ∆vi+ 1
2

= 0, then the estimate clearly holds as JvKi+ 1
2

= 0 by construction of
SP-WENO. Thus, we assume ∆vi+ 1

2
6= 0. Furthermore, the estimate holds trivially for

(θ+
i , θ

−
i+1) ∈ Ω0.

If (θ+
i , θ

−
i+1) ∈ Ω1, then

|θ+
i | 6 1 ⇐⇒ −1 6

∆vi− 1
2

∆vi+ 1
2

6 1.

Thus,

JvKi+ 1
2

∆vi+ 1
2

=
1

2
−

∆vi− 1
2

2∆vi+ 1
2

6 1 =⇒
∣∣∣JvKi+ 1

2

∣∣∣ 6 ∣∣∣∆vi+ 1
2

∣∣∣ < 2
∣∣∣∆vi+ 1

2

∣∣∣ .
Similarly, if (θ+

i , θ
−
i+1) ∈ Ω2, then

|θ−i+1| 6 1 ⇐⇒ −1 6
∆vi+ 3

2

∆vi+ 1
2

6 1.

Thus,

JvKi+ 1
2

∆vi+ 1
2

=
1

2
−

∆vi+ 3
2

2∆vi+ 1
2

6 1 =⇒
∣∣∣JvKi+ 1

2

∣∣∣ 6 ∣∣∣∆vi+ 1
2

∣∣∣ < 2
∣∣∣∆vi+ 1

2

∣∣∣ .
Finally, if (θ+

i , θ
−
i+1) ∈ Ω3, then

|θ+
i |, |θ−i+1| 6 1.

Repeating the above arguments, we once again get∣∣∣JvKi+ 1
2

∣∣∣ 6 2
∣∣∣∆vi+ 1

2

∣∣∣ .

Remark 6.3.3. The bounding constant 2 on the right-hand side of (6.8) is identical to
the one obtained with ENO-2 [35], but smaller than that obtained with ENO-3. Thus,
SP-WENO leads to tighter stability bounds for higher order accuracy, as compared to its
ENO counterparts.

Remark 6.3.4. While attempting to construct SP-WENO, we were able to find several
other WENO-3 weights satisfying the above mentioned properties. The weights described
by (6.7) gave the best numerical results for scalar conservation laws, among all the possible
options considered, especially near discontinuous solutions. We were also able to construct
weights which ensured the reconstruction to be TVD. However, the reconstruction suffered
from loss of accuracy near smooth extrema [84]. Furthermore, the search for TVD property
in the set-up of TeCNO schemes would be futile, as the high-order entropy conservative
fluxes used do not lead to a TVD scheme.
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6.4 Reconstruction accuracy of SP-WENO

We now demonstrate that SP-WENO does indeed give the desired order of accuracy in
approximating the solution at cell-interfaces, assuming the solution is smooth enough.
We consider the smooth function

u(x) = sin (10πx) + x, x ∈ [0, 1].

The domain is discretized using an N -cell uniform mesh with mesh size h = (b − a)/N .
SP-WENO is used to reconstruct the values at the cell interfaces, based on the point
values at the cell centers. We also compare the results with ENO-2, ENO-3 and the
existing robust version of WENO-3 proposed in [62] (see also [106]). The error in the
interface values are evaluated as

‖u−
i+ 1

2

− u(xi+ 1
2
)‖Lph + ‖u+

i+ 1
2

− u(xi+ 1
2
)‖Lph , p ∈ [1,∞].

The errors and the corresponding convergence rates with the various reconstruction meth-
ods, are shown in Table 6.1.

Let us first analyse the order of convergence for the various methods. If we consider
the L∞h norm, ENO-2, ENO-3 and SP-WENO give the expected order of convergence,
while WENO-3 gives almost fourth-order convergence. This can possibly be explained by
the fact that unlike the the first three methods, the weights used in WENO-3 are smooth.
For the errors evaluated in the L1

h norm, the ENO schemes give the expected order of
convergence, while both SP-WENO andWENO-3 give more than third-order convergence.
In fact, SP-WENO order of convergence seems to be far superior as compared to WENO-3.

Recall the Remark 5.8.1, where we mentioned that the order of convergence is not
everything. If we compare the third-order methods, then they can be arranged as ENO-
3 < SP-WENO < WENO-3 in the order of increasing L∞h errors for any fixed mesh,
amongst the meshes considered in Table 6.1. Although WENO-3 has the largest order of
convergence and will eventually give the smallest errors if the mesh is refined further, it
is not always practical to work with such a fine mesh. Similarly, WENO-3 has the largest
error measured in the L1

h norm on all the meshes considered. With SP-WENO and ENO-
3, we can clearly see the crossing point: ENO-3 has smaller L1

h errors on the first two
mesh levels, but SP-WENO quickly overtakes ENO-3 and gives the smallest errors on the
remaining mesh levels. We are more interested in the L1

h errors since the convergence
theory for conservation laws are generally posed in the L1 setting.

6.5 Numerical results with SP-WENO for scalar conservation
laws

For scalar conservation laws and a given entropy function η(u), two-point entropy conser-
vative fluxes are uniquely determined (see Section 5.1). We choose the quadratic entropy
function η(U) = U2/2, which leads to the entropy variable being equal to the conserved
variable, i.e., V := ∂Uη(U) = U .

We use a TeCNO4 entropy stable flux, which is of the form

Fi+ 1
2

= F ∗,4
i+ 1

2

− 1

2
Di+ 1

2
JV Ki+ 1

2
,
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SP-WENO ENO-3

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

40 8.59e-02 - 2.24e-01 - 3.95e-02 - 5.60e-02 -
80 6.73e-03 3.67 2.97e-02 2.92 4.90e-03 3.01 7.43e-03 2.92
160 5.01e-04 3.75 3.77e-03 2.98 6.08e-04 3.01 9.42e-04 2.98
320 3.64e-05 3.78 4.73e-04 2.99 7.57e-05 3.01 1.18e-04 2.99
640 2.59e-06 3.81 5.91e-05 3.00 9.47e-06 3.00 1.48e-05 3.00
1280 1.82e-07 3.83 7.39e-06 3.00 1.18e-06 3.01 1.85e-06 3.00
2560 1.26e-08 3.85 9.24e-07 3.00 1.47e-07 3.00 2.31e-07 3.00

WENO-3 ENO-2

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

40 2.04e-01 - 4.34e-01 - 2.35e-01 - 4.34e-01 -
80 4.03e-02 2.34 1.14e-01 1.93 5.39e-02 2.12 1.14e-01 1.93
160 7.25e-03 2.48 2.88e-02 1.98 1.29e-02 2.07 2.88e-02 1.98
320 1.18e-03 2.62 7.10e-03 2.02 3.14e-03 2.03 7.22e-03 2.00
640 1.77e-04 2.74 1.65e-03 2.10 7.76e-04 2.02 1.81e-03 2.00
1280 2.13e-05 3.05 1.64e-04 3.34 1.93e-04 2.01 4.52e-04 2.00
2560 2.10e-06 3.34 9.08e-06 4.17 4.81e-05 2.00 1.13e-04 2.00

Table 6.1: Inclined sine wave: reconstruction errors.

where F ∗,4
i+ 1

2

is a fourth-order entropy conservative flux given by (5.15), and Di+ 1
2
is a

scalar dissipation operator approximating |F ′(u)|. Note that we can directly reconstruct
the entropy variables instead of scaled entropy variable, since the dissipation operator is a
scalar. The reconstruction is performed using SP-WENO, ENO-2 or ENO-3, all of which
have the sign property. Time integration is performed using SSP-RK3.

6.5.1 Linear advection

Consider the linear advection equation

∂tU + c∂xU = 0,

for which the base second-order entropy flux required for TeCNO4 is given by (5.4). The
dissipation operator is chosen as Di+ 1

2
= |c|. For the following test cases, we take the

convective velocity c = 1.

Advecting sine-wave

The domain is taken to be [−π, π], with final time tf = 0.5 and CFL = 0.4. The initial
profile is given by

U0(x) = sin (x),
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with periodic boundary conditions. Table 6.2 shows L1
h errors with various reconstruc-

tions. SP-WENO gives more than third-order accuracy, while ENO-2 and ENO-3 give
expected convergence rates. Furthermore, the magnitude of the errors with SP-WENO
and ENO-3 are comparable on each mesh.

N SP-WENO ENO-3 ENO-2
error rate error rate error rate

50 6.22e-04 - 2.58e-04 - 1.61e-02 -
100 6.90e-05 3.17 3.23e-05 3.00 4.36e-03 1.88
200 7.66e-06 3.17 4.04e-06 3.00 1.16e-03 1.91
400 8.29e-07 3.21 5.05e-07 3.00 3.08e-04 1.91
600 2.26e-07 3.20 1.50e-07 3.00 1.41e-04 1.92
800 8.72e-08 3.31 6.31e-08 3.00 8.09e-05 1.93

Table 6.2: L1
h errors for linear advection: sine-wave advection test with TeCNO4 flux.

Advecting fourth-power sine-wave

We consider the advection of the following smooth function

U0(x) = sin4 (x),

on a domain [−π, π] with final time tf = 0.5 and CFL = 0.5. For the given test case, the
MUSCL scheme using ENO schemes are known to perform poorly. This was first noted
by Rogerson and Meiburg [98], who attributed this behaviour to the selection of linearly
unstable stencils by the ENO algorithm. A similar behaviour is also observed when
the ENO method is used in the TeCNO4 framework, as shown in Table 6.3. Though
ENO-2 gives the expected second-order of accuracy, there is a clear deterioration in the
convergence rate for ENO-3 with mesh refinement. SP-WENO, on the other hand, does
not suffer from such problems and continues to give more than third order accuracy.

N SP-WENO ENO-3 ENO-2
error rate error rate error rate

100 1.32e-03 - 1.48e-03 - 2.13e-02 -
200 1.48e-04 3.16 1.97e-04 2.91 6.12e-03 1.80
400 1.64e-05 3.17 2.57e-05 2.94 1.66e-03 1.89
600 4.61e-06 3.14 8.35e-06 2.77 7.63e-04 1.91
800 1.79e-06 3.29 4.86e-06 1.88 4.41e-04 1.90
1000 8.55e-07 3.31 3.62e-06 1.32 2.87e-04 1.92

Table 6.3: L1
h errors for linear advection: fourth-power sine-wave advection test with

TeCNO4 flux.
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Advecting discontinuity

In this test case, we demonstrate the performance of SP-WENO in approximating discon-
tinuous solutions. The domain is [−1, 1], with final time tf = 0.5 and CFL = 0.4. The
initial discontinuous profile is given by{

3 if x < 0

−1 if x > 0
.

The mesh consists of 100 cells with transmissive boundary conditions. The results with
the TeCNO4 scheme are shown in Figure 6.6. While ENO-2 and ENO-3 reconstruction
seem to give oscillation-free solutions, SP-WENO leads to minor undershoots near the
discontinuity. The solutions with mesh refinement for SP-WENO are shown in Figure
6.7.
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(b) Zoomed region near contact wave

Figure 6.6: Linear advection of discontinuity: Solution with TeCNO4 at time t=0.5 for
x ∈ [0, 1].
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Figure 6.7: Linear advection of discontinuity: mesh refinement study with SP-WENO.
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6.5.2 Burgers’ Equation

Consider the non-linear Burgers equation

∂xU + ∂x

(
U2

2

)
= 0,

whose base second-order entropy flux is chosen as (5.5), while the scalar diffusion matrix
is taken to be of the form

Di+ 1
2

=
|Ui|+ |Ui+1|

2
.

Sine-wave

We choose the domain [−1, 1] with a smooth initial profile given by

U0(x) = 1 +
1

2
sin (πx)

and periodic boundary conditions. Being a non-linear problem, the solution develops a
discontinuity in finite time, which can be evaluated to be t = 2

π
≈ 0.636. We simulate the

solution till time t = 0.3 with CFL=0.4, at which point the solution is still smooth. The
convergence rates with TeCNO4 are shown in Table 6.4. ENO-3 reconstruction shows
a clear deterioration in its order of accuracy, while SP-WENO seems to once again give
more than third-order accuracy.

In theory, the total entropy for smooth solutions is preserved over time, provided the
boundary contributions can be dropped by assuming (say) periodic boundaries. After the
appearance of the discontinuity, a sharp decrease in total entropy is expected. To see this,
we evaluate the quantity

R(t) =
E(t)− E(0)

E(0)
, where E(t) :=

1∫
−1

η(U(x, t))dx. (6.9)

up to time t = 0.7. Note that R(t) is precisely the relative change in total entropy, which
is constant (identically zero) for smooth solutions. The quantity E(t) is approximated by

E(t) ≈ Eh(t) =
∑
i

ηi(t)h. (6.10)

The results depicted in Figure 6.8 clearly show that SP-WENO performs the best from
the point of view of preservation of total entropy, prior to the shock. The most dissipative
solutions are obtained with ENO-2, while ENO-3 lies somewhere in between. Moreover,
the performance with all reconstructions improves with mesh refinement.

Remark 6.5.1. The time-stepping scheme may also introduce a small of amount numer-
ical diffusion. We will return to this point in Chapter 8.
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N SP-WENO ENO3 ENO2
error rate error rate error rate

50 3.41e-04 - 3.07e-04 - 4.73e-03 -
100 4.17e-05 3.03 4.76e-05 2.69 1.35e-03 1.81
200 4.51e-06 3.21 8.44e-06 2.49 3.77e-04 1.84
400 4.98e-07 3.18 1.80e-06 2.23 1.02e-04 1.89
600 1.33e-07 3.26 7.29e-07 2.23 4.71e-05 1.90
800 5.22e-08 3.25 3.91e-07 2.17 2.72e-05 1.92

Table 6.4: L1
h errors for burgers equation for sine-wave test.
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Figure 6.8: Evolution of R(t) for the sine-wave test.
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Shock wave

Consider the initial condition

U0(x) =


1, if x < 0

1− x, if 0 6 x 6 1

0, if x > 0

,

on the domain [−1, 4]. The Burgers equations with this initial condition can be solved
by the method of characteristics (see Chapter 3 of [33]) till time t < 1, with the solution
given by

U(x, t) =


1, if x < t, 0 6 t < 1

1−x
1−t , if t 6 x 6 1, 0 6 t < 1

0, if x > 1, 0 6 t < 1

. (6.11)

However, the method of characteristics breaks down for t > 1 since the characteristics
intersect. Beyond t = 1, the solution is described by the shock

U(x, t) =

{
1, if x < 1+t

2
, t > 1

0, if x > 1+t
2
, t > 1

. (6.12)

The solution is evaluated till final time tf = 2 with CFL = 0.4. The mesh consists of
500 cells with transmissive boundary conditions. The solutions with the TeCNO4 flux is
shown in Figure 6.9. Recall that SP-WENO gave minor overshoots near the discontinuity
for the linear advection equation (see Figure 6.6). For the current test case, ENO-2, ENO-
3 and SP-WENO all give minor oscillations near the shock, although the overshoot with
SP-WENO is comparatively larger. The shock is equally well resolved by each method.
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(b) Zoomed pre-shock region

Figure 6.9: Burgers equation with shock solution at t = 2.

Corresponding to the exact solution (6.11) and (6.12), the expression for the exact
total entropy is given by

E(t) =

4∫
−1

η(U(x, t))dx =

{
2+t

3
, if t < 1

t+3
4
, if t > 1

, (6.13)
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6.5. Numerical results with SP-WENO for scalar conservation laws

while the total entropy with the numerical schemes is approximated by (6.10). We consider
the deviation of the numerical total entropy from the exact value, by monitoring the
evolution of |E(t) − Eh(t)|. The results shown in Figure 6.10 indicate that SP-WENO
performs the best prior to the appearance of the shock at t = 1, while ENO-2 is the
most dissipative. After the appearance of the shock, all methods deviate from the exact
total entropy, with SP-WENO showing the least deviation. The magnitude of deviation
reduces for all methods with mesh refinement.
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Figure 6.10: Evolution of deviation in total entropy for the shock wave test case by TeCNO4
schemes.

In the previous test case with the sine-wave, the total entropy was conserved before
the appearance of the discontinuity, since periodic boundary conditions were imposed.
However, in the present test case we have transmissive boundary conditions. Furthermore,
the shock-wave does not reach the boundaries till the final time, ensuring the flux at
x = −1 and x = 4 are constant for the entire simulation time. Thus, the quantity

R(t) =
E(t)− E(0) + t

(
q(U)

∣∣∣
x=4
− q(U)

∣∣∣
x=−1

)
E(0)

, (6.14)

is constant till t < 1, and shows a sharp decay after the appearance of the shock. Note
that if periodic boundary conditions are imposed, (6.14) reduces to the relative change
in total entropy given by (6.9). The entropy flux corresponding to quadratic entropy
function is given by (2.20). Thus,

q(U)
∣∣∣
x=4
− q(U)

∣∣∣
x=−1

= −1

3
.

Once again, SP-WENO performs the best at preserving R(t) till t = 1 and approximating
the decay of R(t) after the appearance of the shock.

Remark 6.5.2. The minor oscillations visible in Figure 6.9 can be attributed to insuffi-
cient dissipation near shocks. Note that despite the presence of oscillations, the scheme
satisfies the entropy condition, and thus guaranteed to converge to the unique entropy
solution in the L1 space.
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Figure 6.11: Evolution of R(t) for the shock wave test case.

Rarefaction wave

This test corresponds to a rarefaction wave. The domain is [−1, 1] with the initial profile
given by

u0(x) =

{
−2, if x < 0

1, if x > 0
.

The solution is evaluated till final time tf = 0.2 with CFL = 0.4. The mesh consists of 100
cells with transmissive boundary conditions. The solutions shown in Figure 6.12 indicates
that SP-WENO gives the most accurate solution, while ENO-2 is the most dissipative.
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Figure 6.12: Burgers equation rarefaction wave: Solution with TeCNO4 at time t = 0.2.

6.6 Numerical results with SP-WENO for Euler equations

For the Euler equations, we use the KEPEC flux given by (5.12) as the base second-order
entropy conservative flux. We choose the Roe-type diffusion operator (5.22) to construct
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entropy stable schemes. Note that the scaled entropy variables Z are reconstructed, which
leads to the numerical flux

Fi+ 1
2

= F
(4,∗)
i+ 1

2

− 1

2
R>
i+ 1

2
Λi+ 1

2
JZKi+ 1

2
.

Smooth density wave

This test case is in the same spirit as that of linear advection test considered in of Section
6.5.1, for which ENO-3 is shown to perform poorly. The domain is chosen as [0, 2] with
the initial profile

ρ = 1 + 0.5 sin4 (x), u = 0.5, p = 1,

and periodic boundary conditions. The final time is tf = 0.5 with CFL = 0.5. The exact
solution corresponds to the advection of the smooth density profile. The L1

h errors for
density obtained on different meshes are shown in Table 6.5. The solution with ENO-3
loses its expected order of accuracy, which drops well below second-order, as was also
observed in Section 6.5.1. SP-WENO on the other hand gives more than third-order
accuracy.

N SP-WENO ENO-3
error rate error rate

100 2.61e-04 - 3.43e-04 -
200 2.91e-05 3.17 4.46e-05 2.94
400 3.21e-06 3.18 6.66e-06 2.74
600 8.91e-07 3.16 2.88e-06 2.05
800 3.56e-07 3.19 1.79e-06 1.66
1000 1.75e-07 3.18 1.25e-06 1.59

Table 6.5: L1
h error of density for Euler equations: advecting smooth density wave.

Shu-Osher test

This test case proposed by Shu and Osher [107] involves the interaction of shocks of
different strengths and highly oscillatory smooth waves. The domain is chosen as [−5, 5]
with final time tf = 1.8 and CFL = 0.4. The initial condition has a discontinuity at
x = −4 with

U0(x) =

{
UL if x < −4

UR if x > −4
,

where ρLuL
pL

 =

3.857143
2.629369
10.33333

 ,
ρRuR
pR

 =

1.0 + 0.2 sin (5x)
0
1

 .
The solutions with SP-WENO and ENO-3 are shown in Figure 6.13 on a mesh with N =
400 cells. As the expression for an exact solution is not available, a solution with ENO-3
on a mesh with 2000 cells is used for reference. The TeCNO4 with ENO-3 reconstruction
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does well in approximating the solution, as compared to the reference solution. However
SP-WENO gives a fairly large overshoot close to the strong shock. Although the solution
will converge in the L1 sense, large amplitude oscillations for the Euler equations may
lead to the violation of positivity of pressure or density.
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Figure 6.13: Euler equations Shu-Osher test: Solutions using TeCNO4 with ENO-3 and
SP-WENO at time t = 1.8.

6.7 SP-WENOc: A fix for systems of conservation laws

In order to understand why SP-WENO gives unsatisfactory results while approximating
discontinuous solutions, we need to take a closer look at the scheme being used. The
TeCNO4 flux uses a fourth-order entropy conservative flux, coupled with a dissipation
operator where an appropriate reconstruction of the scaled entropy variables leads to
the reconstructed jump JZKi+ 1

2
. As shown Section 6.3.1, the reconstructed jump with

SP-WENO is zero in a large number of scenarios, i.e., group Ω0. In other words, there
is no numerical dissipation in these regions, and scheme is governed only by the fourth
order entropy conservative flux. While the cases covered in Ω0 need not be satisfied at an
interface corresponding to a discontinuity in the solution, it may describe an interface in
the close proximity of a shock (or a contact). This could lead to large Gibbs oscillations,
as was observed in the numerical results in the previous sections.

A possible fix would be to perturb the reconstruction procedure described by SP-
WENO, so that the reconstructed jump is non-zero in key regions. In particular, we focus
on cases 2 and 3 of Ω0, which correspond to a concave or convex solution profile about
the interface under consideration. In terms of the jump ratios, these are characterized by
either θ+

i < 1, θ−i+1 > 1 or θ+
i > 1, θ−i+1 < 1. Let us collectively call these two scenarios as

the C-region. Consider the reconstructed jump written in the form (6.5). In the C-region
we always have

[
w̃0(1− θ−i+1) + w1(1− θ+

i )
]

= 0 with SP-WENO reconstruction. Thus,
we introduce a small perturbation in terms of the function G, such that

JvKi+ 1
2

=
1

2

[
w̃0(1− θ−i+1) + w1(1− θ+

i ) + G
]

∆vi+ 1
2
. (6.15)
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In order to ensure that the perturbation is a consequence of the the appropriate choice of
the WENO weights, we propose the following modifications

C1 = C1 −
1

4

G
(1− θ+

i )
, C2 = C2 −

1

4

G
(1− θ−i+1)

, (6.16)

which is well-defined in the C-region since θ+
i 6= 1 and θ−i+1 6= 1. In order to ensure that

the weights are consistent, i.e., (P1’) is satisfied, we consider the additional modification

C#
1 = min

(
max

(
C1,−

3

8

)
,
1

8

)
, C#

2 = min

(
max

(
C2,−

3

8

)
,
1

8

)
. (6.17)

C#
1 , C

#
2 are used in place of C1, C2 for evaluating the SP-WENO weights in the C-region.

The next task is to choose the function G, with the aim to retain most of the desirable
properties of SP-WENO. One possible choice is

G =

(
|∆vi+ 1

2
|

0.5(|vi|+ |vi+1|)

)3

, (6.18)

provided ∆vi+ 1
2
6= 0. Based on the Remark 6.2.1, negation symmetry and the mirror

property are preserved for this form of G. Since G > 0, the constraint (6.17) guarantees
that the pair (C#

1 , C
#
2 ) lies in the feasible regions for cases 2 and 3 (refer to Figure 6.4).

Furthermore, the perturbation to the initial SP-WENO jump is O(|∆vi+ 1
2
|4) for smooth

solutions (assuming C#
1 = C1 and C#

2 = C2), which ensures that the superior order of
convergence observed with the TeCNO4 scheme is retained.

We refer to the SP-WENO reconstruction with the correction (6.16) (6.17) and (6.18)
in the C-region, as SP-WENOc.

6.8 Reconstruction accuracy of SP-WENOc

As done for SP-WENO, we first test whether SP-WENOc truly leads to a third-order
reconstruction at the cell interfaces. We consider the smooth function

u(x) = d0 + sin (10πx) + x, (6.19)

where we have the freedom to choose d0. The L1 interface errors and convergence rates for
d0 = 0 are shown in Table 6.6. While the original SP-WENO gives more than third-order
convergence, SP-WENOc with (6.18) fails to give even third-order convergence. However,
SP-WENOc regains the accuracy of SP-WENO if we choose d0 = 2, as shown in Table 6.7.
Our explanation for this behaviour of SP-WENOc is that for d0 = 0, the function u(x)
can take values very close to zero. In these regions |ui|, |ui+1| ∼ 0, which leads to very bad
scaling of the correcting function G given by (6.18). Thus, the numerical dissipation can
be quite large causing a drop in accuracy. However, for d0 = 2 the function is translated
away from zero, and we find that SP-WENOc performs as well as SP-WENO.

One way to fix this issue is to choose G as

G =

(
min

(
|∆vi+ 1

2
|

0.5(|vi|+ |vi+1|)
, |∆vi+ 1

2
|
))3

, (6.20)
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which puts a bound in the magnitude of G. If SP-WENOc is used with (6.20), we find
that we recover the loss in accuracy for d=0 as shown in Table 6.6. For d=2, the original
SP-WENO and both forms of SP-WENOc give almost identical errors and convergence
rates. Thus, we use SP-WENOc with (6.20) to reconstruct the scaled entropy variables
in the TeCNO4 scheme.

N SP-WENO SP-WENOc
with (6.18)

SP-WENOc
with (6.20)

error rate error rate error rate
40 8.59e-02 - 1.44e-01 - 8.79e-02 -
80 6.73e-03 3.67 2.20e-02 2.71 7.35e-03 3.58
160 5.01e-04 3.75 3.46e-03 2.66 5.27e-04 3.80
320 3.64e-05 3.78 5.43e-04 2.67 3.78e-05 3.80
640 2.59e-06 3.81 8.49e-05 2.67 2.68e-06 3.82
1280 1.82e-07 3.83 1.33e-05 2.68 1.87e-07 3.84
2560 1.26e-08 3.85 2.08e-06 2.67 1.29e-08 3.85

Table 6.6: L1
h reconstruction errors with SP-WENO and SP-WENOc for d0 = 0 in (6.19).

N SP-WENO SP-WENOc
with (6.18)

SP-WENOc
with (6.20)

error rate error rate error rate
40 8.59e-02 - 8.59e-02 - 8.59e-02 -
80 6.73e-03 3.67 6.73e-03 3.67 6.73e-03 3.67
160 5.01e-04 3.75 5.01e-04 3.75 5.01e-04 3.75
320 3.64e-05 3.78 3.64e-05 3.78 3.64e-05 3.78
640 2.59e-06 3.81 2.59e-06 3.81 2.59e-06 3.81
1280 1.82e-07 3.83 1.82e-07 3.83 1.82e-07 3.83
2560 1.26e-08 3.85 1.26e-08 3.85 1.26e-08 3.85

Table 6.7: L1
h reconstruction errors with SP-WENO and SP-WENOc for d0 = 2 in (6.19).

Remark 6.8.1. The stability bound (6.8) no longer holds for SP-WENOc. However, a
careful a case-by-case calculation will lead to an alternate bound of the form∣∣∣JvKi+ 1

2

∣∣∣ 6 4
(∣∣∣∆vi− 1

2

∣∣∣+
∣∣∣∆vi+ 1

2

∣∣∣+
∣∣∣∆vi+ 3

2

∣∣∣) . (6.21)

6.9 Numerical results with SP-WENOc for Euler equations

We now present results using the TeCNO4 scheme, with KEPEC as the base flux and the
modified SP-WENOc reconstruction.
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6.9. Numerical results with SP-WENOc for Euler equations

Smooth density wave

This test corresponds to the one discussed in Section 6.6. The L1
h errors for density

obtained on different meshes are shown in Table 6.8. Both SP-WENO and SP-WENOc
give very similar results, with more than third-order accuracy. Recall that there is a
severe loss in accuracy with ENO-3 (see Table 6.5).

N SP-WENO SP-WENOc
error rate error rate

100 2.61e-04 - 2.60e-04 -
200 2.91e-05 3.17 2.91e-05 3.16
400 3.21e-06 3.18 3.21e-06 3.18
600 8.91e-07 3.16 8.91e-07 3.16
800 3.56e-07 3.19 3.55e-07 3.19
1000 1.75e-07 3.18 1.74e-07 3.18

Table 6.8: L1
h error of density for Euler equations: advecting smooth density wave.

Shu-Osher test

We consider the Shu-Osher test, for which SP-WENO resulted in large overshoot near
the strong shock (see Figure 6.13). Although the new SP-WENOc reconstruction does
not completely remove the overshoot, it definitely gives much better control over the
magnitude of oscillation compared to SP-WENO, as can be seen in Figure 6.14. This
indicates that the numerical dissipation does not vanish in key regions under the proposed
modification.
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ENO-3
SP-WENOc

(a) Density
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3.5
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4.5
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Reference
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(b) Zoomed profile

Figure 6.14: Euler equations Shu-Osher test: Solutions using TeCNO4 with ENO-3 and
SP-WENOc at time t = 1.8.
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Chapter 6. A sign-preserving WENO reconstruction

Isentropic vortex

This corresponds to advection of an isentropic vortex discussed in Section 5.8.4. We run
the simulation till tf = 20 with α = 0◦ and M = 0.5, at the end of which the vortex
completes one horizontal cycle. The L1

h errors for density, pressure and both velocity
components are shown in Table 6.9. Once again, both SP-WENO and SP-WENOc give
almost identical results, with more than third-order accuracy.

Density Pressure

N SP-WENO SP-WENOc SP-WENO SP-WENOc
error rate error rate error rate error rate

40 1.43e-01 - 1.46e-01 - 2.01e-01 - 2.09e-01 -
80 1.82e-02 2.97 1.79e-02 3.03 2.54e-02 2.98 2.53e-02 3.05
160 1.33e-03 3.77 1.35e-03 3.72 1.90e-03 3.74 1.95e-03 3.70
320 1.04e-04 3.67 1.06e-04 3.67 1.46e-04 3.70 1.50e-04 3.70

x-Velocity y-Velocity

N SP-WENO SP-WENOc SP-WENO SP-WENOc
error rate error rate error rate error rate

40 3.68e-01 - 3.66e-01 - 3.66e-01 - 3.69e-01 -
80 6.89e-02 2.41 6.74e-02 2.44 6.81e-02 2.43 6.66e-02 2.47
160 5.73e-03 3.58 5.78e-03 3.54 5.60e-03 3.60 5.60e-03 3.57
320 4.57e-04 3.65 4.60e-04 3.65 4.85e-04 3.53 4.86e-04 3.53

Table 6.9: L1
h error for advecting isentropic vortex.

Shock vortex interaction

This problem was introduced in Section 5.8.5. The various parameters of the perturbation
are chosen as ε = 0.3, rc = 0.005, β = 0.204 and (xc, yc) = (0.25, 0.5). The initial profile
of solution on a 200 × 200 mesh is shown in Figure 6.15(a). The numerical solutions at
tf = 0.35 with ENO-3, SP-WENO and SP-WENOc are shown in Figure 6.15(b)-(d). The
solution with all three methods are comparable, with well resolved shock lines.
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6.9. Numerical results with SP-WENOc for Euler equations

(a) Initial profile (b) TeCNO4 + ENO-3

(c) TeCNO4 + SP-WENO (d) TeCNO4 + SP-WENOc

Figure 6.15: Density profiles for shock-vortex interaction.
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7. Energy preserving finite difference
scheme for the shallow water equations

The study of fluid dynamics in thin layers, such as the flow in lakes, rivers and the sea near
coastal areas, are of great importance in the fields of oceanography and climate-modelling.
Such flows are governed by the shallow water equations (2.23), which can be obtained
from the incompressible Euler equations by assuming: i) the variations in the vertical
direction (along z-direction) are negligible compared to those in the horizontal scales, ii)
the pressure is evaluated from hydrostatic balance [72]. Entropy conservative and entropy
stable schemes have been constructed and tested for (2.23) in [118, 125]. The shallow water
equations (2.23) assume a flat bottom topography. Generalising the model by assuming a
non-flat topography, introduces additional source terms in (2.23). Well-balanced energy
stable schemes for the shallow water equations with non-flat discontinuous topography
have been proposed in [37].

The model (2.23) is written in terms of the conserved variables (hu1, hu2, h)>. How-
ever, several meteorological models are actually based on the formulation in terms
of the primitive variables (u1, u2, h)>, which is also called the vector-invariant form
[3, 119, 100, 101, 122]. Furthermore, since these models are used to simulate plane-
tary waves, the Coriolis force i.e., the inertial force due the the rotation of the Earth, also
needs to be considered. In this chapter, we consider the shallow water equations in the
vector-invariant form, with non-flat bottom topography and rotational terms included in
the formulation. The total energy of this model is preserved for smooth solutions. Thus,
our objective is to construct an energy preserving finite difference scheme for this system.

7.1 Governing equations

Let u = (u1, u2)> denote the horizontal velocity, h be the vertical extent of the fluid col-
umn above the bottom surface, and hs := hs(x, y) be the height of the bottom topography
relative to the mean surface of the Earth. Additionally, define the kinetic energy per unit
mass K = 1

2
|u|2 and the vorticity ω = k · ∇×u, where k is the unit vector normal to the

Earth’s surface. The shallow water model in primitive form can be written as

∂tu +∇(gH +K) + (F + ω) k× u = 0,

∂th+∇ · (hu) = 0,
(7.1)

where H = h+ hs is the height of the fluid column above the mean surface of the earth.
The quantity F = 2$ sin θ is the Coriolis parameter, with $ being the angular velocity
of the earth and φ corresponding to the geographical latitude of the Earth’s surface. We

107



Chapter 7. Energy preserving finite difference scheme for the shallow water equations

use the notation ϑ := F + ω to denote the absolute vorticity of the fluid. Additionally,
the quantity ϑ/h is called the potential vorticity, while ϑ2/(2h) is called the potential
enstrophy.

We can rewrite the equations (7.1) as

∂tU + A1(U)∂xU + A2(U)∂yU + S̃ = 0, (7.2)

where

U =

u1

u2

h

 , A1(U) =

u1 0 g
0 u1 0
h 0 u1

 , A2(U) =

u2 0 0
0 u2 g
0 h u2

 , (7.3)

while the source term is S̃ = (−u2F , u1F , 0)>. Referring to Definition 2.0.1, we consider
the matrix A(U,n) for n ∈ R2, which has the eigenvalues λ1 = un, λ2 = un −

√
gh, λ3 =

un +
√
gh where un = u ·n. The matrix of eigenvectors corresponding to A(U,n) is given

by

R =

−n2 −√gn1
√
gn1

n1 −√gn2
√
gn2

0
√
h

√
h

 , (7.4)

with the eigenvectors being linearly independent. Note that the eigenvalues are the iden-
tical to those evaluated for the shallow water equations written in terms of the conserved
variables in Section 2.5.4.

Consider the energy of the shallow water equations,

η(U) = hK +
1

2
gH2,

which is a sum of the kinetic energy and the potential energy of the fluid. We define a
new vector of variables

V = η′(U) =

 hu1

hu2

K + gH

 . (7.5)

Taking the scalar product of (7.1) with the V leads to the following conservation law for
energy

∂t(hK +
1

2
gH2) +∇ · [(gH +K)hu] = 0. (7.6)

Note that the absolute vorticity term in (7.1) does not affect the energy equation (7.6),
since u · (k× u) = 0.

Remark 7.1.1. Recall from Section 2.5.4, that the energy served as an entropy function
for the shallow water equations written in the conservative form. However, η(U) is not
convex for the vector-invariant formulation in terms of the u − h variables, and thus it
cannot be called an entropy function for the system (7.2)-(7.3). Furthermore, we do not
refer to V as the vector of entropy variables.
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7.1. Governing equations

7.1.1 Preserved quantities

Integrating (7.6) (satisfied for smooth solutions) over a domain Ω and assuming periodic
or no-flow boundary conditions, leads to the preservation of total energy

d
dt

∫
Ω

η dx =
d
dt

∫
Ω

(
hK +

1

2
gH2

)
dx = 0.

However, total energy is not the only quantity preserved by the the system (7.1). In fact,
it is possible to show that any quantity of the form

C =

∫
Ω

hF
(
ϑ

h

)
dx, (7.7)

is conserved, where F is any arbitrary function of the the potential vorticity [104]. Taking
F ≡ 1 leads to the conservation of mass, which can also be obtained by integrating the
last equation of (7.1) over the domain Ω. Taking F as the identity map leads to the
conservation of the total absolute vorticity, while the choice F = ϑ2/(2h2) leads to the
conservation of the total potential enstrophy. Using the terminology of Hamiltonian
mechanics, the system (7.1) is an example of a non-canonical Hamiltonian system, which
by Noether’s theorem has two types of conserved quantities, namely Hamiltonians and
Casimirs [104]. The total energy is the Hamiltonian of the system, while quantities given
by (7.7) are the Casimir invariants for the system.

A second-order energy and potential enstrophy preserving staggered finite-difference
scheme for (7.1), was proposed by Arakawa and Lamb [3] on Cartesian and spherical grids.
An extension to this scheme was proposed by Takano and Wurtele [119], which ensures the
fourth-order accurate advection of potential vorticity in the case of non-divergent mass
flux, i.e., ∇.(hu) = 0. Extending the Arakawa and Lamb scheme to more general grids,
while being able to conserve total energy, total potential enstrophy and other invariants, is
by no means a trivial task. In [92], a potential enstrophy and energy preserving scheme was
constructed on geodesic grids, by suitably discretizing the divergence and curl operators.
In a series of papers [122, 91, 121], a family of schemes (referred to as TRiSK) have been
developed on non-orthogonal polygonal grids, using the tools of discrete exterior calculus
(DEC). However, these schemes are unable to simultaneously preserve both energy and
potential enstrophy. Recently, the Arakawa and Lamb scheme has been extended to
generalized non-orthogonal quadrilateral grids in [124], where a finite difference scheme
has been formulated directly for the shallow water equations cast in generalized curvilinear
coordinates. This scheme is able to preserve both invariants.

An alternate approach of constructing energy and potential enstrophy preserving
schemes, using the tools of Hamiltonian mechanics along Helmholtz decomposition, was
proposed by Salmon [101] on planar grids. Combining the Hamiltonian and DEC ap-
proaches, the Arakawa and Lamb scheme has been recently extended to arbitrary spherical
grids in [32].

7.1.2 u− h− ϑ model

From the above discussions, the (absolute) vorticity ϑ clearly plays an important role in
atmospheric flows. Note that ϑ is also a conserved quantity. Assuming that the Coriolis
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Chapter 7. Energy preserving finite difference scheme for the shallow water equations

parameter F is constant in time (which is a valid assumption since the angular velocity of
the Earth is independent of time), the evolution equation for ϑ can be obtained by taking
the curl of the velocity equations in (7.1). Solving for the velocity u may not lead to a
good description of the vorticity dynamics. Hence, we also solve for ϑ as an independent
variable, by considering the larger coupled system

∂tu +∇(gH +K) + ϑ(k× u) = 0,

∂th+∇ · (hu) = 0,

∂tϑ+∇ · (ϑu) = 0.

(7.8)

We can rewrite the equations (7.8) as

∂tU + ∂xf1(U) + ∂yf2(U) = −S,
∂tϑ+ ∂xf

ϑ
1 + ∂yf

ϑ
2 = 0,

(7.9)

where

U =

u1

u2

h

 , f1(U) =

gH +K
0
hu1

 , f2(U) =

 0
gH +K
hu2

 , (fϑ1 , f
ϑ
2 ) = ϑu>, (7.10)

while the source term is S = (−u2ϑ, u1ϑ, 0)>.
Solving for vorticity directly as an additional variable is not a new approach. The

vorticity-velocity formulation for incompressible Navier-Stokes has been quite popular
[40, 49, 9], and numerical schemes based on such models have been shown to perform well
in practice. In [82], it has been shown that the evaluation of discrete vorticity directly
in the finite element set-up, is more suitable to ensure the conservation of total helicity
for the Navier-Stokes equations. Recently, an energy, enstrophy and vorticity preserving
spectral scheme has been proposed for the two-dimensional incompressible Navier-Stokes
equations, by solving a coupled vorticity-velocity system [86].

7.2 Finite difference scheme

We propose the following semi-discrete finite difference scheme on a uniform Cartesian
grid to solve the system (7.8)

dUi,j

dt
+

(
Fx
i+ 1

2
,j
− Fx

i− 1
2
,j

)
∆x

+

(
Fy

i,j+ 1
2

− Fy

i,j− 1
2

)
∆y

= −Si,j, (7.11a)

dϑi,j
dt

+

(
F x,ϑ

i+ 1
2
,j
− F x,ϑ

i− 1
2
,j

)
∆x

+

(
F y,ϑ

i,j+ 1
2

− F y,ϑ

i,j− 1
2

)
∆y

= 0, (7.11b)

where the numerical fluxes Fx,Fy are consistent with f1, f2 respectively, while (F x,ϑ, F y,ϑ)
is consistent with (fϑ1 , f

ϑ
2 ). The following theorem gives a sufficient condition to ensure

that the scheme (7.11a) conserves energy, which is in the same spirit as the condition
required to construct entropy conservative schemes for conservation laws.
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7.2. Finite difference scheme

Theorem 7.2.1. Consider the energy η(U) and the corresponding energy flux components

q1(U) = (gH +K)hu1, q2(U) = (gH +K)hu2,

appearing in the evolution equation (7.6) for η(U). Define the potential functions

Ψx(U) := 〈V(U), f1(U)〉 − q1(U), Ψy(U) := 〈V(U), f2(U)〉 − q2(U), (7.12)

where the vector V is defined by (7.5). If the numerical flux functions Fx,Fy satisfy the
conditions 〈

∆Vi+ 1
2
,j,F

x
i+ 1

2
,j

〉
= ∆Ψx

i+ 1
2
,j
,
〈

∆Vi,j+ 1
2
,Fy

i,j+ 1
2

〉
= ∆Ψy

i,j+ 1
2

, (7.13)

then, the numerical scheme (7.11a) preserves energy. In other words, it satisfies

dη(Ui)

dt
+

(
qx
i+ 1

2
,j
− qx

i− 1
2
,j

)
∆x

+

(
qy
i,j+ 1

2

− qy
i,j− 1

2

)
∆y

= 0 (7.14)

where qx
i+ 1

2
,j

=
〈
Vi+ 1

2
,j,F

x
i+ 1

2
,j

〉
−Ψx

i+ 1
2
,j and q

y

i,j+ 1
2

=
〈
Vi,j+ 1

2
,Fy

i,j+ 1
2

〉
−Ψy

i,j+ 1
2
.

Proof. Noting that 〈Vi,j,Si,j〉 = 0, the proof of theorem follows on the same line as that
of Theorem 5.1.1, by taking the scalar product of (7.11a) with Vi,j.

7.2.1 An energy preserving flux

We construct a numerical flux which satisfies the algebraic relations (7.13). We give
details for the flux in the x-direction, while similar arguments can be used to construct
the y-flux. Furthermore, we omit the indices i+ 1

2
, j for ease of notation.

Let the x-flux be denoted by Fx := (F x,u1 , F x,u2 , F x,h)> and consider the algebraic
relation 〈∆V,Fx〉 = ∆Ψx. The potential function given in (7.12) evaluates out to be
Ψx(U) = (gH + K)hu1. We compare the coefficients of jumps in the variables U in the
algebraic relation, to find the expression for the components of Fx. We also consider the
jump in hs since the height of the bottom topography need not be constant in space. We
have

∆V =

h∆u1 + u1∆h

h∆u2 + u2∆h
∆K + g∆H

 , ∆K = u1∆u1 + u2∆u2, ∆H = ∆h+ ∆hs. (7.15)

Thus,
〈∆V,Fx〉 = (hF x,u1 + u1F

x,h)∆u1 + (hF x,u2 + u2F
x,h)∆v2

+ (u1F
x,u1 + u2F

x,u2 + gF x,h)∆h+ (gF x,h)∆hs.
(7.16)

Also,
∆Ψx = (Hg +K)(h∆u1 + u1∆h) + hu1(g∆H + ∆K)

= [(Hg +K)h+ hu1u1]∆u1 + (hu1u2)∆u2

+ [(Hg +K)u1 + hu1g]∆h+ [hu1g]∆hs.

(7.17)

111



Chapter 7. Energy preserving finite difference scheme for the shallow water equations

Comparing jump coefficients in (7.16) and (7.17), we get the following set of equations

hF x,u1 + u1F
x,h = (Hg +K)h+ hu1u1,

hF x,u2 + u2F
x,h = hu1u2,

u1F
x,u1 + u2F

x,u2 + gF x,h = (Hg +K)u1 + hu1g,

gF x,h = hu1g.

The solution of this system leads to the following expression for an energy preserving flux

Fx
i+ 1

2
,j

=

K + gH
0

hu1


i+ 1

2
,j

. (7.18)

A similar argument leads to the expression

Fy

i,j+ 1
2

=

 0
K + gH

hu2


i,j+ 1

2

. (7.19)

Note that (7.18) and (7.19) are the arithmetic average of the exact flux across the cell-
interfaces, and thus second-order accurate. High-order energy preserving fluxes can be
obtained using the interpolation formula (5.14). In particular, the formula (5.15) leads to
a fourth-order accurate energy preserving scheme.

7.2.2 WENO-5 flux

Since 〈Vi,j,Si,j〉 = 0, ϑ does not directly effect the evolution of total energy. However,
ϑi,j appears in the source term (7.11a). If ϑi,j is not evaluated with high-order accuracy,
the overall accuracy in the evolution of Ui,j will deteriorate, which will in-turn influence
the evolution of energy. Thus, a finite difference WENO-5 approach with flux splitting
(see Section 4.2) is used to approximate the conservative flux differences in the scheme
(7.11b) for evolving ϑ.

We treat u as a given constant advection velocity in each cell for ϑ, and consider the
following Lax-Friedrichs flux splitting(

fϑ1
)U

(ϑ,u) =
1

2

(
fϑ1 (ϑ) + αxϑ

)
,
(
fϑ1
)D

(ϑ,u) =
1

2

(
fϑ1 (ϑ)− αxϑ

)
,(

fϑ2
)U

(ϑ,u) =
1

2

(
fϑ2 (ϑ) + αyϑ

)
,
(
fϑ2
)D

(ϑ,u) =
1

2

(
fϑ2 (ϑ)− αyϑ

)
,

(7.20)

where we choose αx = maxi,j{|(u1)i,j|}, αy = maxi,j{|(u2)i,j|}.
We briefly describe the WENO-5 reconstruction algorithm used to approximate the

flux in the x-direction, while the flux in the y-direction can be approximated in a similar
manner. We begin by considering the upwind flux along the x-direction. For simplicity
of notation, for a fixed j we denote φi = (fϑ1 )U (ϑi,ui), where the j index has been
suppressed. We wish to find the left approximation φ−

i+ 1
2

at the interface xi+ 1
2
, which

will require the cell values {φi−2, ..., φi+2}. The three third-order approximations at the
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interface i+ 1
2
, obtained from quadratic polynomial reconstruction in the cell centered at

xi, are given by

φ
(0),−
i+ 1

2

=
1

3
φi +

5

6
φi+1 −

1

6
φi+2,

φ
(1),−
i+ 1

2

= −1

6
φi−1 +

5

6
φi +

1

3
φi+1,

φ
(2),−
i+ 1

2

=
1

3
φi−2 −

7

6
φi−1 +

11

6
φi.

Then the fifth-order WENO approximation is given by

(F x,ϑ)U
i+ 1

2
= φ−

i+ 1
2

= w0φ
(0),−
i+ 1

2

+ w1φ
(1),−
i+ 1

2

+ w2φ
(2),−
i+ 1

2

,

where the WENO weights are evaluated as described in [106]

wr =
w̃r

w̃0 + w̃1 + w̃2

, w̃r =
dr

(βr + ε)2
, r = 0, 1, 2,

with d0 = 3/10, d1 = 3/5, d2 = 1/10. We take ε = 10−6 to ensure the denominator in the
expression for w̃r does not vanish. The smoothness indicators βr are given by

β0 =
13

12
(φi − 2φi+1 + φi+2)2 +

1

4
(3φi − 4φi+1 + φi+2)2 ,

β1 =
13

12
(φi−1 − 2φi + φi+1)2 +

1

4
(φi−1 − φi+1)2 ,

β2 =
13

12
(φi−2 − 2φi−1 + φi)

2 +
1

4
(φi−2 − 4φi−1 + 3φi+1)2 .

The downward flux needs to be approximated from the right at the interface xi+ 1
2
.

This is achieved by mirroring the solution about the interface xi+ 1
2
, and finding the ap-

proximation from the left. In other words, we set φi+k = (fϑ1 )D(ϑi−k+1,ui−k+1) and repeat
the above algorithm to get (F x,ϑ)D

i+ 1
2

= φ−
i+ 1

2

. The final flux at the interface xi+ 1
2
is given

by
(F x,ϑ)i+ 1

2
= (F x,ϑ)U

i+ 1
2

+ (F x,ϑ)D
i+ 1

2
.

7.3 Numerical results

We now present some numerical results for the shallow water equations. We use a fourth-
order energy preserving flux formed using (7.18), (7.19) and the interpolation formula
(5.15). The flux for absolute vorticity is approximated with the WENO-5 flux splitting
approach described in Section 7.2.2. The combined scheme is termed as the VI-EP4
scheme. The time integration is performed using a fourth-order Runge-Kutta scheme,
with the time step evaluated based on the convection speedem

∆t =
CFL×∆x

λ
, λ = max

i,j

{
|ui,j|+

√
ghi,j

}
.

with CFL chosen as a non-negative number less than unity. We may alternatively choose a
constant ∆t, while ensuring that the effective CFL < 1. Furthermore, we impose periodic
boundary conditions at the domain boundaries.
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7.3.1 Advecting vortex

We consider a vortex advection problem obtained by adapting the isentropic vortex ad-
vection problem for the Euler equations to the shallow water equations [125]. The initial
conditions of the flow on the domain [−40, 40]× [−40, 40] are prescribed as

u1 = M cos(α) + c1(y − yc) exp
(
−c2r

2)
)
, u2 = M sin(α)− c1(x− xc) exp

(
−c2r

2)
)
,

H = 1− c2
1

4c2g
exp

(
−2c2r

2)
)
, h = H − hs, r =

√
(x− xc)2 + (y − yc)2,

with the parameters c1 = 0.04, c2 = 0.02, g = 1 and α = 0◦. The remaining parameters,
i.e., the initial center of the vortex (xc, yc), the free-stream velocity parameter M , the
bottom topography hs and the Coriolis term F , are varied depending on the test case
being considered.

Accuracy of EP4 scheme

We test the accuracy of the VI-EP4 scheme by setting (xc, yc) = (0, 0),M = 1, hs = 0 and
F = 0. The solution is simulated till final time tf = 80 with CFL=0.5, at the end of which
the vortex completes one complete cycle and returns to its original position. Note that
the the absolute vorticity for this problem is equal to the vorticity, since the Coriolis terms
are not present. Table 7.1 shows that the convergence rate of ϑ is fifth-order, which is
expected since ϑ is evolved using a WENO-5 method. Reaping the benefits of a fifth-order
approximation of ϑ, which appears in the source term of (7.11a), the components of U
converge at a rate between fourth and fifth-order, despite being evolved by a fourth-order
accurate scheme.

u1 u2

N
L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

50 1.43e-00 - 5.31e-03 - 1.87e-00 - 9.59e-03 -
100 5.05e-02 4.83 3.30e-04 4.01 6.84e-02 4.77 4.69e-04 4.35
200 1.63e-03 4.95 1.11e-05 4.90 2.27e-03 4.91 1.60e-05 4.87
300 2.23e-04 4.91 1.40e-06 5.11 3.14e-04 4.88 2.11e-06 4.99
400 5.62e-05 4.79 3.12e-07 5.21 7.96e-05 4.77 4.99e-07 5.01

h ϑ

N
L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

50 7.59e-01 - 2.11e-03 - 6.77e-01 - 6.14e-03 -
100 2.78e-02 4.77 9.14e-05 4.53 3.55e-02 4.25 3.04e-04 4.33
200 1.13e-03 4.62 3.55e-06 4.68 1.14e-03 4.96 1.18e-05 4.68
300 1.88e-04 4.42 5.57e-07 4.57 1.34e-04 5.27 1.65e-06 4.85
400 5.47e-05 4.29 1.55e-07 4.42 2.96e-05 5.26 3.99e-07 4.95

Table 7.1: Accuracy of VI-EP4 scheme for advecting vortex problem with a flat topography
and no Coriolis effects. N corresponds to the number of cells in each coordinate direction.

114



7.3. Numerical results

Preservation of invariant quantities

Although VI-EP4 has been designed to conserve the total energy (at the semi-discrete
level), we would like to test its ability to preserve other invariants discussed in Section
7.1.1. In particular, we would like to observe the discrete evolution of total mass, total
absolute vorticity and total potential enstrophy. We set (xc, yc) = (0, 0), hs = 0, M = 1,
F = 0 and choose a final time of tf = 160 with CFL=0.5. For M = 1, the vortex
completes two full cycles at the final time. We discretize the domain with 100 cells in
each direction, which ensures that there about 16 cells spanning the diameter of the
vortex. In Figure 7.1, we plot the changes in the integral quantities from their initial
values. These differences are scaled by their values at t = 0, except for the total absolute
vorticity which is almost zero (

∑
ϑ0 ≈ −1.02e − 12). The VI-EP4 scheme is able to

preserve total mass and total absolute vorticity quite well till the final time, with their
relative differences being kept at zero. The relative difference in total energy deviates
from zero by an order of 10−11, indicating a minor decay in energy. This in not surprising
as energy is known to be dissipated or generated depending on the time-marching scheme
used to integrate the semi-discrete scheme [116] (also see Chapter 8). Unfortunately,
there is a significant decay in the total enstrophy. By doubling the number of cells in each
direction i.e., N = 200, the preservation of total enstrophy is greatly improved, as is the
preservation of total energy.

7.3.2 Effect of Coriolis force

Inclusion of the effects Coriolis forces can substantially change the solution structure for
the shallow water equations. To see this, we set M = 0 and discretize the domain with
N = 200 cells in each direction, with a final time tf = 40. A constant time step ∆t = 0.2
is chosen, which corresponds to an effective CFL ≈ 0.56. We first consider the case when
there is no Coriolis forces active, i.e., F = 0. In this case, the vortex continues to be
centered at the origin with a steady clockwise spin, as shown in Figure 7.2. However, on
choosing F = 1, the vortex remains centered at the origin, but periodically changes its
direction of rotation, as can be seen in Figure 7.3. The degree of change in vortex rotation
depends on the strength of the Coriolis forces. For smaller values of F , say F = 10−1,
we have observed (not presented here) that the direction of rotation does not change but
the strength of the spin oscillates.

The evolution of relative change in invariants for F = 1 are depicted in Figure 7.4.
Note that we can now plot the relative change in total absolute vorticity, since the initial
value total absolute vorticity is no longer close to zero with the inclusion of a non-zero F .
The total mass and absolute vorticity are preserved by VI-EP4. The total energy shows
a small decay, while the relative change in total enstrophy oscillates close to zero with an
amplitude of order 10−9. If we reduce the time step to ∆t = 0.05, we can see from Figure
7.5 that the conservation of total energy is drastically improved. This clearly shows that
the loss of energy can be attributed to the time integration scheme. However, their seems
to be no noticeable improvement in the conservation of total enstrophy. On the other
hand, if we double the number of cells in each direction and work with the original time
step of ∆t = 0.1, we observe that while there is no improvement in the conservation of
total energy, the amplitude of oscillations in the relative change in total enstrophy reduces
by a factor of 10.
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(c) Change in absolute vorticity
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(d) Relative change in total enstrophy

Figure 7.1: Evolution of invariants for advecting vortex with M = 1 with VI-EP4.
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7.3. Numerical results

(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 15

(e) t = 20 (f) t = 25

(g) t = 30 (h) t = 40

Figure 7.2: Stationary vortex solution with F = 0. The color plots represent the magnitude
of vorticity ω, while the vectors describe the velocity field.
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(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 15

(e) t = 20 (f) t = 25

(g) t = 30 (h) t = 40

Figure 7.3: Stationary vortex solution with F = 1. The color plots represent the magnitude
of vorticity ω, while the vectors describe the velocity field.
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(c) Relative change in total absolute vorticity
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Figure 7.4: Evolution of relative change in invariants for vortex with M = 0 and F = 1, with
∆t = 0.1.
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Figure 7.5: Evolution of relative change in total energy and total enstrophy for vortex with
M = 0 and F = 1 on two meshes, with different values of ∆t.
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Chapter 7. Energy preserving finite difference scheme for the shallow water equations

Non-flat bottom topography

The test problems considered above assumed a flat bottom topography. We now consider
a hump bottom topography given by

hs(x, y) = h0 exp (−r2
0), r0 =

√
(x− x0)2 + (y − y0)2, (7.21)

where h0 = 0.05 represents the peak height of the bottom surface, with the hump centered
at (x0, y0) = (5, 0). The vortex parameters are chosen as (xc, yc) = (−5, 0), M = 0.5 and
F = 0. The domain is discretized using 200 cells in each direction, with a final time of
tf = 60 and CFL=0.5.

The vortex is able to pass over the hump without losing its structure, as shown in
Figure 7.6. The background field of the solution interacts with the hump and generates
weak wave fronts scattering through the domain, which simply pass through the advecting
vortex, as can been seen in Figure 7.7. As was observed in the previous test cases, the
total energy and total potential enstrophy deviate slightly from the expected constant
values (see Figure 7.8). However, the results improve significantly on refining the mesh.

(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 60

Figure 7.6: Absolute vorticity plots for the advecting vortex solution with non-flat surface.
The plot is zoomed to [−20, 20]2.
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7.3. Numerical results

(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 60

Figure 7.7: Height h plots for the advecting vortex solution with non-flat surface
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Figure 7.8: Evolution of invariants for the advecting vortex solution with non-flat surface.
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7.3. Numerical results

7.3.3 Perturbed geostrophic balance

We now test the robustness of VI-EP4 to approximate more complex solutions. We
consider two test cases, in which we start with a solution of the rotating shallow water
equations which is in geostrophic balance i.e., the solutions are steady in time. We work
with solutions which are not stable. In other words, the solution profile eventually diverges
from steady state when a small perturbation is introduced into the initial profile.

Roll-up of vorticity

We consider the domain [−5, 5]× [−5, 5] and choose

h = h̃(y) = 1 + 0.1

[
tanh

(
1− y2

ε

)
+ 1

]
, (7.22)

with ε = 0.5. We assume a flat bottom topography (hs ≡ 0) and choose a non-zero
constant Coriolis term F = 1. The initial flow is assume to be purely zonal in the x-
direction, with u2 ≡ 0. The the remaining variables describing geostrophic balance can
be obtained as

u1(y) = − g

F
∂yh̃(y), ω =

g

F
∂yyh̃(y), (7.23)

where we set g = 1.
The steady state solution is perturbed by introducing a small "mountain-like" pertur-

bation to the height

h(x, y) = h̃(y) + hδ exp (−r2), r =
√
x2 + y2

where hδ determines the peak height of the perturbation. We choose hδ = 0.005 and
simulate the solution till a final time of tf = 50 with CFL=0.1.

We also compare the solutions obtained with the VI-EP4 scheme for the vector-
invariant model, to those obtained by numerical schemes formulated for the more com-
monly used conservative form of the shallow water equations with rotation. In other
words, we consider the model

∂tU + ∂xf1(U) + ∂yf2(U) + S = 0, (7.24)

where

U =

hu1

hu2

h

 , f1(U) =

hu2
1 + 1

2
gh2

hu1u2

hu1

 , f2(U) =

 hu1u2

hu2
2 + 1

2
gh2

hu2

 , (7.25)

while the source term is S = (−hu2F , hu1F , 0)>.
We work with two important schemes corresponding to the conservative model. The

first is an entropy conservative scheme [125], with the energy chosen as the entropy func-
tion. The energy/entropy preserving flux is given by

Fx
i+ 1

2
,j

=

h u1
2 + g

2
h2

h u1 u2

h u1


i+ 1

2
,j

, Fy

i,j+ 1
2

=

 h u1 u2

h u2
2 + g

2
h2

h u2


i,j+ 1

2

. (7.26)
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Chapter 7. Energy preserving finite difference scheme for the shallow water equations

Using (5.15), we get a fourth-order energy preserving scheme, which we term as CM-EP4.
The second scheme considered, is a WENO5 finite difference scheme, with the following
flux splitting

(f1)U (U) =
1

2
(f1(U) + αxU) , (f1)D (U) =

1

2
(f1(U)− αxU) ,

(f2)U (U) =
1

2
(f2(U) + αyU) , (f2)D (U) =

1

2
(f2(U)− αyU) ,

(7.27)

where we choose αx = maxi,j{|(u1)i,j| +
√
ghi,j}, αy = maxi,j{|(u2)i,j| +

√
ghi,j}. This

scheme is termed as CM-WENO5. Unlike CM-EP4, we cannot a priori prove that CM-
WENO5 is energy/entropy preserving.

Since vorticity is not evaluated in the conservative model given by (7.24)-(7.25), it is
approximated in each cell from the velocity field by

ωi,j = ∂hx(u2)i,j − ∂hy (u1)i,j.

To obtained a 2p-th order accurate approximation of ω, the following partial derivative
approximations of the velocity field are use

∂hy (u1)i,j =

p∑
k=−p

(αk)(u1)i,j+k, ∂hx(u2)i,j =

p∑
k=−p

(αk)(u2)i+k,j. (7.28)

For p = 2, the weights in (7.28) are given by

α−2 = −α2 =
1

12
, α−1 = −α1 = −2

3
, α0 = 0. (7.29)

The plots for the variables h and u shown in Figures 7.9 - 7.11 clearly show that the
solutions with CM-WENO5 are the smoothest, while those with CM-EP4 are the polluted
with small scale oscillations. The solutions with VI-EP4 are comparable to CM-WENO5.
Using the 4-th order approximation of ω given by (7.28) and (7.29), leads to a very noisy
profile for CM-EP4 (see Figure 7.12). This is expected since the approximated velocity
field with CM-EP4 is not regular enough. The vorticity evaluated directly by the VI-EP4
scheme is smooth and comparable to the 4-th order accurate vorticity for CM-WENO5.

One can also approximate the vorticity from the velocity field obtained with the VI-
EP4 scheme. However, Figure 7.13 clearly shows that such approximations can be noisy
if the velocity field is not very regular. This demonstrates an advantage of solving for
(absolute) vorticity as an independent variable, especially when the numerical scheme is
not very dissipative.

Next, we compare the evolution of relative change in total energy and total enstrophy
by the schemes. Figure 7.14 shows that CM-WENO5 is the most dissipative of the three
schemes, while CM-EP4 and VI-EP4 are both able to preserve the total energy of the
flow. The evolution of total enstrophy in Figure 7.15 once again indicates that CM-
WENO5 is the most dissipative. At first glance, it seems that CM-EP4 performs the best
at preserving total enstrophy. However, recall that enstrophy is evaluated using vorticity,
which is poorly approximated by CM-EP4 at later times. Thus, the results shown in 7.15
for CM-EP4 are misleading.
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Potential vorticity ϑ/h can also be used as an indicator to judge the performance of
numerical schemes. Subtracting ϑ/h times the second equation of (7.8) from the third
equation of (7.8) gives the following evolution equation for potential vorticity

∂t

(
ϑ

h

)
+ u1∂x

(
ϑ

h

)
+ u2∂y

(
ϑ

h

)
= 0. (7.30)

Since (7.30) is simply an advection equation, the potential vorticity should satisfy the
maximum principle. In other words, the minimum and maximum values of potential vor-
ticity should not change in time. We plot the bounds of potential vorticity approximated
by the schemes in Figure 7.16. Till time t = 30, both VI-EP4 and CM-EP4 are able to
preserve the bounds, while CM-WENO5 shows a decrease in the upper bound and an
increase in the lower bound. This is expected since CM-WENO5 is the most dissipative.
After t = 30, the vorticity approximated with the solution from CM-EP4 is oscillatory
and thus the bounds of of potential vorticity quickly deviate from its initial values. The
VI-EP4 scheme is able to preserve the bounds quite well till the end of the simulation.

(a) CM-EP4 (b) CM-WENO5 (c) VI-EP4

Figure 7.9: Contour and pseudo plots of height at t=50 for roll-up of vorticity test case.

Flow over an isolated mountain

This test case has been taken from [124], and was initially designed for simulation on the
sphere (see test case 5 in [134]). The domain is taken as [−πa, πa] × [−πa, πa], where
a = 6.37 × 106m corresponds to the Earth’s radius. Thus, the x- and y-extents of the
domain are equal to the Earth’s circumference. We start with a geostrophic balance
obtained by considering a flat bottom topography and choosing

H(y) = h̃− a

g
Ωũ sin2

(y
a

)
, u1(y) = ũ cos

(y
a

)
, u2 ≡ 0, F (y) = 2Ω sin

(y
a

)
,

where h̃ = 5960m, ũ = 20ms−1 and Ω = 7.292× 10−5s−1 is the rotation rate of the Earth.
Note that unlike the previous test cases, the Coriolis force is a function of space.
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(a) CM-EP4 (b) CM-WENO5 (c) VI-EP4

Figure 7.10: Contour and pseudo plots of u1 at t=50 for roll-up of vorticity test case.

The geostrophic balance is perturbed by suddenly introducing a mountain in the bot-
tom topography

hs(x, y) = h̃s

(
1− r

R

)
, r = min

(
R,
√

(x− xc)2 + (y − yc)2
)
,

where h̃s = 2000m, R = πa/9 and the mountain is centered at (xc, yc) = (−πa/2, πa/6).
Note that H is still a function of only y, but h 6= H with the introduction of the mountain.
To compare with the results in [124], we consider a 400× 400 mesh with two time steps i)
∆t = 6s with an effective CFL ≈ 0.016, and ii) ∆t = 30s with an effective CFL ≈ 0.08s.
Since the scheme proposed in [124] is second-order accurate, we also simulate results on
a coarser mesh of size 200 × 200. The vorticity contours at the end of 7 days is shown
in Figure 7.17, and are indistinguishable for various meshes and time-steps considered.
Furthermore, the results are not polluted by small scale oscillations near the mountain,
as is the case in [124].

The relative change in total energy with the VI-EP4 scheme shown in Figure 7.18 is
zero up to machine precision error, on both meshes. The relative change in total enstrophy
deviates from zero, which improves with mesh refinement. However, there is no change in
the results when the time step is reduced from 30s to 6s. Note that the numerical scheme
in [124] is able to conserve total enstrophy more accurately, since the scheme has been
designed to preserve enstrophy.

We also plot the bounds of the approximated potential vorticity in Figure 7.19. Note
that the initial maximum (minimum) values on the two meshes differ by an order of 10−11.
However, the values on the courser 200× 200 mesh are eventually indistinguishable from
those on the finer mesh.

We make the following remarks based on the numerical results discussed in the chapter:

• The results for the VI-EP4 scheme show that it can be advantageous to solve for
vorticity as an independent variable.

• The VI-EP4 scheme uses a central flux for evaluating h and u, which may lead
Gibbs-oscillations when the solution has steep gradients. This is clearly observed
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(a) CM-EP4 (b) CM-WENO5 (c) VI-EP4

Figure 7.11: Contour and pseudo plots of u2 at t=50 for roll-up of vorticity test case.

(a) CM-EP4 (b) CM-WENO5 (c) VI-EP4

Figure 7.12: Contour and pseudo plots of ω at t=50 for roll-up of vorticity test case. The
4-th order finite difference approximation is used for CM-EP4 and CP-WENO5
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Chapter 7. Energy preserving finite difference scheme for the shallow water equations

(a) ω from scheme (b) 4-th order ω FD approx.

Figure 7.13: Comparison of ω obtained from the scheme and the 4-th order finite difference
approximations from the velocity field for VI-EP4 at t=50, for roll-up of vorticity test case.
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Figure 7.14: Evolution of relative change in total energy for roll-up of vorticity test case.
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Figure 7.15: Evolution of relative change in total enstrophy for roll-up of vorticity test case.
A 4-th order of the finite difference method has been used to approximate ω for CM-EP4
and CM-WENO5.
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0 10 20 30 40 50
t

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

M
in
. p

ot
en

tia
l v

or
tic

ity

VI-EP4
CM-EP4
CM-WENO5
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Figure 7.16: Evolution of bounds of potential vorticity for roll-up of vorticity test case. A
4-th order of the finite difference method has been used to approximate ω for CM-EP4 and
CM-WENO5.
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Chapter 7. Energy preserving finite difference scheme for the shallow water equations

(a) Mesh 200× 200 with ∆t = 6s (b) Mesh 200× 200 with ∆t = 30s

(c) Mesh 400× 400 with ∆t = 6s (d) Mesh 400× 400 with ∆t = 30s

Figure 7.17: Comparison of ω obtained with the VI-EP4 scheme for flow over an isolated
mountain.
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7.3. Numerical results
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Figure 7.18: Evolution of relative change in total energy with VI-EP4 for flow over an
isolated mountain.
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Figure 7.19: Evolution of bounds of potential vorticity with VI-EP4 for flow past an isolated
mountain.
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Chapter 7. Energy preserving finite difference scheme for the shallow water equations

with the CM-EP4 scheme, which also uses a central flux. However, using a finite
difference WENO5 method with upwind flux splitting for (absolute) vorticity, seems
to implicitly generate the required amount of dissipation to stabilize the solutions
with VI-EP4.

• The dissipation in VI-EP4 is not as severe as compared to the CM-WENO5 scheme.
Thus, VI-EP4 is able to preserve several important invariants associated the shallow
water equations, for a reasonable amount of time.
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8. A fully-discrete kinetic energy preserv-
ing and entropy stable scheme

In the previous chapters, we have discussed the construction of semi-discrete schemes
which are entropy conservative. However, entropy need not be conserved if we are not
careful about the temporal discretization. It has been shown in [116] that the implicit
backward Euler time discretization can lead to decay of entropy, while the explicit forward
Euler method can lead to production of entropy. A Crank-Nicolson type scheme on the
other hand, can ensure that entropy is conserved. In addition to entropy conservation,
we would like kinetic energy to be preserved by the fully discrete scheme for compressible
flows. Subbareddy and Candler [112] have proposed an implicit fully discrete kinetic
energy preserving finite difference scheme, by choosing appropriate time averaged states.
However, this scheme cannot be shown to be conserve entropy.

In this chapter, we propose a fully-discrete second-order finite difference scheme for
the Euler equations, which is both entropy conservative and kinetic energy preserving.
When used in conjunction with the the viscous fluxes, it leads to the formulation of a
kinetic energy preserving and entropy stable scheme for the Navier-Stokes equations.

8.1 Notations

We introduce some convenient notations required to construct the fully-discrete finite
difference scheme. Consider the semi-discrete finite difference scheme (5.30) for the one-
dimensional Navier-Stokes equations, with the numerical fluxes at the cell interfaces writ-
ten as two-point fluxes in terms of the entropy variables V

Fi+ 1
2

= F(Vi,Vi+1), Gi+ 1
2

= G(Vi,Vi+1).

We rewrite (5.30) in terms of a residual function R

d
dt

Ui = Ri = R(Vi−1,Vi,Vi+1), (8.1)

where

R(a,b, c) =

Rρ(a,b, c)
Rm(a,b, c)
Re(a,b, c)

 =
1

∆x
(−F(b, c) + F(a,b) + G(b, c)−G(a,b)) . (8.2)
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Chapter 8. A fully-discrete kinetic energy preserving and entropy stable scheme

The discrete kinetic energy evolution equation discussed in Section 5.6.1 can be rewrit-
ten in terms of the the residual function as∑

i

∆x
dKi
dt

=
∑
i

[
−1

2
u2
iRρ

i + uiRm
i

]
∆x, (8.3)

where u := u(V). Define the quantity

Si = S(Vi−1,Vi,Vi+1) =
∆ui+ 1

2

∆x
p̃i+ 1

2
− 4

3
µ
∑
i

(
∆ui+ 1

2

∆x

)2

, (8.4)

with ∆ui+ 1
2
, p̃i+ 1

2
are obtained from U(Vi),U(Vi+1). Then, the following result relates S

with the residual function R.

Lemma 8.1.1. Assume that the residual function Ri is evaluated with an inviscid numer-
ical flux Fi+ 1

2
satisfying the condition (5.9), and with the viscous flux discretized according

to (5.32). Then the following relation holds∑
i

S(Vi−1,Vi,Vi+1)∆x =
∑
i

[
−1

2
u(Vi)

2Rρ(Vi−1,Vi,Vi+1)

]
∆x

+
∑
i

[u(Vi)Rm(Vi−1,Vi,Vi+1)] ∆x.
(8.5)

Proof. Based on the derivations in Section 5.6.1, we have∑
i

∆x
dKi
dt

=
∑
i

S(Vi−1,Vi,Vi+1)∆x,

since the inviscid and viscous numerical fluxes are assumed to satisfy the necessary con-
ditions. Using the relation (8.3) gives the desired result (8.5).

Finally, we consider the entropy relation corresponding to (8.1). Taking scalar product
of (8.1) with Vi and summing over all cells leads to∑

i

dηi
dt

∆x =
∑
i

〈Vi,R(Vi−1,Vi,Vi+1)〉∆x. (8.6)

We introduce the following quantity

Vi = V(Vi−1,Vi,Vi+1) = −

8µβi+ 1
2

3

(
∆ui+ 1

2

∆x

)2

+
κ

RTiTi+1

(
∆Ti+ 1

2

∆x

)2
 , (8.7)

where θi, θi+1,∆ui+ 1
2
,∆θi+ 1

2
are obtained from U(Vi),U(Vi+1). Note that Vi 6 0. The

quantity V can also be related to the R in the following manner.

Lemma 8.1.2. Assume that the residual function Ri is evaluated with an entropy con-
servative numerical flux Fi+ 1

2
and with the viscous flux discretized according to (5.32).

Then the following relation holds∑
i

V(Vi−1,Vi,Vi+1)∆x =
∑
i

〈Vi,R(Vi−1,Vi,Vi+1)〉∆x. (8.8)
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8.2. Fully discrete finite volume scheme

Proof. As discussed in Section 5.6.2, if we choose an entropy conservative inviscid flux
and discretize the viscous flux according to (5.32), then the inviscid flux contributions
cancel one another when summed over cells leading to∑

i

dηi
dt

∆x =
∑
i

Vi∆x 6 0.

Using the relation (8.6), we have the desired result (8.8).

8.2 Fully discrete finite volume scheme

Let Ṽ(U∗,U∗∗) be a centered average entropy variable that is yet to be specified, and
define

V
n+ 1

2
i = Ṽ(Un

i ,U
n+1
i ),

which depends on the solution at time levels n and n+ 1. Consider the implicit finite
difference scheme

Un+1
i −Un

i

∆t
+

F
n+ 1

2

i+ 1
2

− F
n+ 1

2

i− 1
2

∆x
=

G
n+ 1

2

i+ 1
2

−G
n+ 1

2

i− 1
2

∆x
, (8.9)

where the fluxes are evaluated as

F
n+ 1

2

i+ 1
2

= F(V
n+ 1

2
i ,V

n+ 1
2

i+1 ), G
n+ 1

2

i+ 1
2

= G(V
n+ 1

2
i ,V

n+ 1
2

i+1 ). (8.10)

Since this is a Crank-Nicholson type scheme, it is second-order accurate. Note that the
scheme can also be written as

Un+1
i −Un

i

∆t
= R(V

n+ 1
2

i−1 ,V
n+ 1

2
i ,V

n+ 1
2

i+1 ),

where the residual function R is given by (8.2).

8.2.1 Fully discrete kinetic energy preserving scheme

Assume that the velocity corresponding to the average value Ṽ is given by

ũn+ 1
2 = u(Ṽ(Un,Un+1)) = u(Vn+ 1

2 ) =

√
ρnun +

√
ρn+1un+1

√
ρn +

√
ρn+1

. (8.11)

This leads to the following result for the discrete kinetic energy Kni = 1
2
ρni (uni )2.

Theorem 8.2.1 (Subbareddy and Candler [112]). If the time-averaged velocity is defined
by (8.11), then the following relation is satisfied

Kn+1
i −Kni

∆t
= −1

2

(
ũ
n+ 1

2
i

)2 ρn+1
i − ρni

∆t
+ ũ

n+ 1
2

i

(ρu)n+1
i − (ρu)ni

∆t
, (8.12)

which is consistent with continuous relation given by the first equation of (3.16).
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Chapter 8. A fully-discrete kinetic energy preserving and entropy stable scheme

The following theorem ensures that the scheme (8.9) is kinetic energy preserving,
provided the fluxes are chosen appropriately.

Theorem 8.2.2. Consider the fully-discrete numerical scheme (8.9), with the numerical
fluxes chosen as follows:

• The inviscid momentum flux is approximated by

F
n+ 1

2
,m

i+ 1
2

= p̃
n+ 1

2

i+ 1
2

+

 ũn+ 1
2

i + ũ
n+ 1

2
i+1

2

F
n+ 1

2
,ρ

i+ 1
2

, (8.13)

where ũn+ 1
2

i is given by (8.11) and p̃n+ 1
2

i+ 1
2

, F n+ 1
2
,ρ

i+ 1
2

are any consistent time-averaged
approximations at the cell-interface xi+ 1

2
.

• The viscous flux is discretized using (5.32), with all the space-differences and space-
averages evaluated using consistent time-averaged states.

Then the total kinetic energy evolves at a discrete level according to∑
i

∆x
Kn+1
i −Kn

i

∆t
=
∑
i

S(V
n+ 1

2
i−1 ,V

n+ 1
2

i ,V
i+ 1

2
i+1 )∆x, (8.14)

with the quantity S defined by (8.4) and evaluated at time-averaged states. In other words,
the fully discrete scheme is kinetic energy preserving.

Proof. Summing the relation (8.12) over all cells gives us the discrete evolution equation∑
i

∆x
Kn+1
i −Kni

∆t
=

∑[
−1

2

(
ũ
n+ 1

2
i

)2 ρn+1
i − ρni

∆t
+ ũ

n+ 1
2

i

(ρu)n+1
i − (ρu)ni

∆t

]
∆x

=
∑
i

[
−1

2

(
u(V

n+ 1
2

i )
)2

Rρ(V
n+ 1

2
i−1 ,V

n+ 1
2

i ,V
n+ 1

2
i+1 )

]
∆x

+
∑
i

[
u(V

n+ 1
2

i )Rm(V
n+ 1

2
i−1 ,V

n+ 1
2

i ,V
n+ 1

2
i+1 )

]
∆x.

The inviscid numerical flux is chosen to satisfy (8.13), which is exactly the condition (5.9)
but defined for time-averaged quantities. Furthermore, the viscous flux is discretized using
(5.32). Thus, an application of Lemma 8.1.1 gives the results (8.14).

Remark 8.2.1. The KEP and KEPEC fluxes satisfy the condition (8.13) and can thus
be used to construct fully-discrete kinetic energy preserving schemes.

8.2.2 Fully discrete entropy conservative scheme

Assume that the averaged entropy variable Ṽ(U∗,U∗∗) satisfies

Ṽ(U∗,U∗∗) · (U∗∗ −U∗) = η(U∗∗)− η(U∗), (8.15)

Then the following theorem details the construction of an entropy stable scheme.
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8.2. Fully discrete finite volume scheme

Theorem 8.2.3. Consider the fully-discrete numerical scheme (8.9) and assume that
V
n+ 1

2
i satisfies (8.15). Furthermore, let the numerical fluxes be chosen as follows:

• The inviscid numerical flux is entropy conservative. A sufficient condition to obtain
such a flux is given by (5.3).

• The viscous flux is discretized using (5.32), with all the space-differences and space-
averages evaluated at consistent time-averaged states.

Then the following entropy estimate holds∑
i

η(Un+1
i )− η(Un

i )

∆t
∆x =

∑
i

V(V
n+ 1

2
i−1 ,V

n+ 1
2

i ,V
n+ 1

2
i+1 )∆x. (8.16)

with the quantity V defined by (8.7) and evaluated using time-averaged states. Since the
quantity V 6 0, (8.16) ensures∑

i

η(Un+1
i )∆x 6

∑
i

η(Un
i )∆x.

In other words, the scheme is entropy stable.

Proof. Since V
n+ 1

2
i satisfies (8.15), taking the scalar product of (8.9) with V

n+ 1
2

i leads to
the cell entropy estimate

η(Un+1
i )− η(Un

i )

∆t
=
〈
V
n+ 1

2
i ,R(V

n+ 1
2

i−1 ,V
n+ 1

2
i ,V

n+ 1
2

i+1 )
〉
. (8.17)

Furthermore, the inviscid flux is entropy conservative and the viscous flux is discretized
using (5.32). Thus, summing (8.17) over all cells and an application of Lemma 8.1.2 gives
us the required result (8.16).

Remark 8.2.2. The entropy conservative ROE-EC and KEPEC fluxes can be used to
construct fully-discrete entropy stable schemes.

8.2.3 Construction of Ṽ

We now demonstrate a method to construct an average value Ṽ satisfying (8.15). More-
over, to ensure kinetic energy preservation, the velocity corresponding to Ṽ should be
given by (8.11). This motivates us to introduce the parameter vector

Z =

Z1

Z2

Z3

 =

 √ρ√ρu
p

 .
Subbareddy and Candler [112] also use such an approach to construct fully-discrete kinetic
energy preserving scheme, however they only considered the mass and momentum balance
equations. We define the following jump and arithmetic averaging operators with respect
to time

δ(·)n+ 1
2 := (·)n+1 − (·)n, σ(·)n+ 1

2 :=
(·)n + (·)n+1

2
.
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Chapter 8. A fully-discrete kinetic energy preserving and entropy stable scheme

We additionally define the logarithmic average operator with respect to time

(̈·)n+ 1
2 :=

(·)n+1 − (·)n
ln(·)n+1 − ln(·)n .

The superscript n+ 1
2
will be dropped to simplify the notation. We wish to find Ṽ such

that (8.15) is satisfied. In other words,

Ṽ1δρ+ Ṽ2δ(ρu) + Ṽ3δE = − 1

γ − 1
δ(ρs). (8.18)

In terms of the parameter vector Z, we have the following exact linearizations

δ(ρ) = 2σ(Z1)δ(Z1),

δ(ρu) = σ(Z2)δ(Z1) + σ(Z1)δ(Z2),

δ(E) =
δ(Z3)

γ − 1
+ σ(Z2)δ(Z2),

δ(ρs) =
σ(ρ)

¨(p)
δ(Z3) +

(
2σ(s) σ(Z)1 −

2γσ(ρ) σ(Z1)
¨(ρ)

)
δ(Z1).

Equating the coefficients of δ(Z2) and δ(Z3) in (8.18) yields

Ṽ2 = −Ṽ3
σ(Z2)

σ(Z1)
, Ṽ3 = −σ(ρ)

¨(p)
,

which in turn gives

β̃ =
σ(ρ)

2 ¨(p)
, ũ =

σ(Z2)

σ(Z1)
. (8.19)

Note that velocity ũ corresponding to Ṽ satisfies (8.11). Finally equating the coefficients
δ(Z1) in (8.18) yields

Ṽ1 =
1

γ − 1

(
γ
σ(ρ)

¨(ρ)
− σ(s)

)
− β̃ũ2,

which gives

s̃ = σ(s) + γ

(
1− σ(ρ)

¨(ρ)

)
. (8.20)

The above definitions of the averages Ṽ1, Ṽ2, Ṽ3 are consistent. The time-averaged entropy
variable Ṽ is most conveniently expressed as

Ṽ = Ṽ(s̃, ũ, β̃),

with s̃, ũ, β̃ given by (8.19) and (8.20).

8.3 Time integration

The discrete system of equations we need to solve is of the form
Un+1 −Un

∆t
−R(Un,Un+1) = 0,

where R is a non-linear function, making the system implicit in Un+1. We consider two
methods to solve for the update Un+1.
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8.3. Time integration

8.3.1 Explicit iteration

Assuming that Un is given, we consider the fixed point problem in U

U = Un + ∆tR(Un,U) = J(U).

This is solved using Picard’s iteration

U(s+1) = J(U(s)), (8.21)

with the initialisation U(0) = Un. The iterations are stopped when the norm of relative
residual drops below some threshold

|(U(s+1) −Un)/(∆t)−R(Un,U(s))|
|R(Un,Un)| < ε.

At the end of the iterations, we set Un+1 = U(s+1).
In practice, the explicit iteration method is found to converge rather slowly. This can

be understood as follows. Assume for the sake of simplicity that R is Lipschitz with a
Lipschitz constant M

|R(U)−R(V)| 6M |U−V|.
Then we have

|J(U)− J(V)| = ∆t|R(U)−R(V)| 6 ∆tM |U−V|.

If ∆tM < 1, we can use the contraction mapping principle to get a unique fixed point
U∗, to which the sequence defined by (8.21) converges. If the Lipschitz constant is large,
it can put a severe restriction on the time-step ∆t.

8.3.2 Newton-GMRES

This approach involves solving for the root of the system

L(U) =
U−Un

∆t
−R(Un,U) = 0.

We make use of an iterative Newton method

L′(U(s))(U(s+1) −U(s)) + L(U(s)) = 0, U(0) = Un.

The iterations are stopped when

|L(U(s+1))|
|L(Un)| < ε,

and we set Un+1 = U(s+1). We need to evaluate two quantities in each Newton iteration,
namely the Jacobian L′(U(s)) and the step size δ = U(s+1) −U(s). Instead of evaluating
the Jacobian, we consider L′(U)W, which is the action of the Jacobian evaluated at U
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Chapter 8. A fully-discrete kinetic energy preserving and entropy stable scheme

on the vector W. We approximate L′(U)W according to the following algorithm given
in [67]

DhL(U,W) =


0, if W = 0
|W|
h|U|

(
L
(
U + h |U|W|W|

)
− L(U)

)
, if W,U 6= 0

|W|
h

(
L
(
hW
|W|

)
− L(U)

)
, if W 6= 0,U = 0

choosing h = 10−7 to evaluate the above derivative. The step size δ is approximated using
the GMRES linear solver. The advantage of the GMRES method is that it makes use
of the matrix vector products defined above. Moreover, if L′ ∈ Rm×m, then the method
converges in atmost m steps. A detailed explaination of the GMRES method is given
in Appendix D. The Newton-GMRES code used for simulating numerical results in this
chapter has been taken from [67].

8.4 Numerical results

We demonstrate the performance of the fully discrete Crank-Nicolson type scheme (8.9),
using the time-averaged vector Ṽ described in Section 8.2.3, the KEPEC flux and the
viscous discretization given by (5.32), which leads to a kinetic energy preserving and
entropy stable scheme. We refer to this scheme as the FDKEPES scheme. The tolerance
level required in the explicit iteration and Newton-GMRES algorithms is set to ε = 10−8.
The time step ∆t is determined by the CFL condition (4.5).

8.4.1 Smooth inviscid solution

We consider a smooth solution for the Euler equations, with the initial conditions given
by

ρ0 = 1 + 0.5 cos(πx), u0 = 5.0, p0 = 1.0,

on the domain [−1, 1] with periodic boundary conditions. The final time is chosen as
tf = 2, which corresponds to the completion of 10 periodic cycles of the wave. The
Newton-GMRES scheme is used for time integration with CFL = 0.5. The errors and
convergence rates shown in Table 8.1 indicate that the scheme is second-order accurate.
Identical errors were obtained (not presented here) when the explicit iteration scheme was
used for time integration.

N L1
h L∞h

error rate error rate
50 5.54e-02 - 5.35e-02 -
100 1.41e-02 1.97 1.22e-02 2.14
200 3.55e-03 2.00 2.86e-03 2.09
400 8.87e-04 2.00 7.08e-04 2.01

Table 8.1: Error with the FDKEPES scheme and Newton-GMRES for advecting density
wave problem.
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8.4. Numerical results

In order to judge which time integration method performs better, we discretize the
mesh with N = 200 cells and vary the CFL number. For the explicit iteration method, we
monitor the average number of Picard iteration steps needed to approximate the solution
at the next time level. On the other hand, for the Newton-GMRES method, we have to
look at the number of inner iteration steps needed for GMRES and the number of outer
iterations steps used for the Newton solve. We infer from table 8.2 that the performance
of both methods is quite similar, for small CFL numbers. However, as CFL number is
increased beyond 1, the explicit method requires considerably more number of iterations
to solve the non-linear time update problem, as compared to Newton-GMRES.

CFL Explicit Iteration Newton-GMRES
L1
h L∞hPicard-steps GMRES-steps Newton-steps

0.5 7 5 5 3.5e-03 2.9e-03
1.0 12 6 8 4.3e-03 3.5e-03
1.5 15 6 10 5.6e-03 4.6e-03
2.0 1432 7 12 7.4e-03 6.1e-03

Table 8.2: Comparing the explicit iteration method and Newton-GMRES.

Remark 8.4.1. The magnitude of errors increases as the CFL number is increased, thus
one needs to be judicious about how large a CFL number is chosen for a particular problem.

8.4.2 DNS of 1D Navier-Stokes: Sod test case

This is a shock tube problem for the Navier-Stokes equations, with the left state
(ρL, uL, pL) = (1.0, 0.0, 1.0) and the right state (ρR, uR, pR) = (0.125, 0.0, 0.1). The do-
main is [0, 1] with the initial discontinuity at x = 0.5. We use the Newton-GMRES scheme
to integrate up to a final time of tf = 0.2 and a CFL=1.5. We choose a constant viscosity
coefficient µ = 2×10−4 and discretize the mesh using N = 100 cells. The solutions shown
in Figure 8.1 are highly oscillatory, indicating that physical viscosity (and the heat flux)
are unable to suppress the oscillations in the solutions. The amplitude of oscillations are
reduced with N = 400, and they finally subside with N = 1000. This behaviour can
be explained by considering the mesh Peclet number Pe = ρu∆x/µ, which is essentially
the local cell Reynolds number. It is well known that the if Pe is much larger than
unity, oscillations can appear while performing DNS using central fluxes [59, 61]. The
Pe corresponding to the different mesh sizes shown in Figure 8.2, validate this fact. A
deeper analysis in this direction will be performed in Chapter 10, where we also look at
the balance between the physical viscosity, heat flux and artificial viscosity introduced in
the numerical flux.

We also compare the fully-discrete solution on a mesh with N = 1000 to the solution
obtained by a semi-discrete scheme with the KEPEC flux and viscous discretization (5.32),
integrated using the explicit SSP-RK3 scheme. The results in Figure 8.3 show that the
solutions obtained by both methods are indistinguishable. Note that we cannot choose
CFL = 1.5 with the semi-discrete scheme as the solution blows up. We choose a more
conservative CFL=0.5. In other words, the fully-discrete scheme with Newton-GMRES
permits the use of larger time steps.

141



Chapter 8. A fully-discrete kinetic energy preserving and entropy stable scheme

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

N=100

N=400

N=1000

(a) Density

0.60 0.65 0.70 0.75 0.80 0.85 0.90
x

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

N=100

N=400

N=1000

(b) Zoomed density profile

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2 N=100

N=400

N=1000

(c) Velocity

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

N=100

N=400

N=1000

(d) Pressure

Figure 8.1: Sod test case with FDKEPES on different mesh sizes
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Figure 8.2: Mesh Peclet numbers with FDKEPES on different mesh sizes
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Figure 8.3: Comparison of FDKEPES with a semi-discrete scheme using the KEPEC flux
and SSP-RK3 on a mesh with N=1000.
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9. Finite volume schemes for Euler equa-
tions

In the previous chapters, we described finite difference schemes on Cartesian grids, sat-
isfying additional properties such as entropy stability and kinetic energy preservation.
However, many applications of interest, particularly in engineering, involve domains with
complex geometry which can be more easily discretized using unstructured grids. Finite
volume methods can be easily applied on unstructured grids, which makes them useful for
problems involving complex domains. In this chapter, we introduce the important ingre-
dients of finite volume schemes on two-dimensional unstructured meshes for systems of
conservation laws, with a focus on the compressible Euler equations. The work presented
in this chapter has been published in [90].

9.1 Mesh

The domain Ω ⊂ R2 is discretized by a collection of non-overlapping triangles, which forms
the primary mesh. A triangle T is formed by vertices i, j, k, as shown in Figure 9.1(a).
We use the notation nTi to describe the outward normal to the edge of T which is opposite
to the vertex i. The normal has magnitude equal to the length of the corresponding edge.
Furthermore, for each boundary edge e, we denote the triangle adjacent to it by Te and
the outward normal to the edge e as ne. These are depicted in Figure 9.1(b). Note that
ne ≡ nTek .

There are two types of finite volume formulations based on the type of cells used as
control volumes, namely cell-centered schemes and vertex-centered schemes.

9.1.1 Cell-centered scheme

In cell-centered schemes, the primary triangles are chosen as control volumes and the
solutions are stored at the centroids. Consider the primary grid shown in Figure 9.2. We
index the various triangles using capital letters I, J,K,etc., with the centroid of triangle TI
denoted by GI . For convenience, we use the notation nIJ to describe the scaled outward
normal with respect to the triangle TI on the edge shared by TI and TJ . Note that this is
equivalent to nTIi in terms of our earlier notation. A simple application of the divergence
theorem gives ∑

J∈I
nIJ = 0, (9.1)

where the notation J ∈ I denotes the set of triangles TJ which share an edge with TI .
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T

i j

k

nT
i

nT
j

nT
k

(a)

Te

T

j i

k
l

e

nT
i

nTe

i

nTe

j

ne

(b)

Figure 9.1: Primary mesh triangles (a) T with its vertices and outward normals (b) bound-
ary triangle Te with outward normals.

9.1.2 Vertex-centered scheme

In this formulation the solution is stored at the vertices of the primary mesh, and a dual
cell Ωi is constructed around each vertex i. One way of constructing the dual cell, is by
joining the centroids of each adjoining triangle to the mid-points of its edges. This leads
to the median dual cell [132, 111, 2]. The Voronoi dual cells can also be generated in a
similar manner, by joining the mid-point of the triangle edges to the circumcenters instead
of the centroids [76, 1]. Examples of a primary mesh and corresponding dual meshes are
depicted in Figure 9.3.

Consider the dual cell Ωi around vertex i as shown in Figure 9.4. If j is a vertex
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Figure 9.2: Primary mesh with triangles as control volumes.

(a) (b) (c)

Figure 9.3: Mesh (a) primary; (b) median dual; (c) Voronoi dual.
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connected to vertex i, then define

nij =

∫
∂Ωi∩∂Ωj

nds = n
(1)
ij + n

(2)
ij ,

where n is the unit normal vector to the faces of dual cell Ωi common with the dual cell
Ωj. The quantity nij has units of length. As before, the divergence theorem gives

i j

Ωi

Ωj

n
(1)
ij

n
(2)
ij

Figure 9.4: Dual cell interface and normal

∑
j∈i

nij = 0, (9.2)

where the notation j ∈ i denotes the set of vertices j neighbouring the vertex i, i.e., which
are connected to vertex i through a primary edge.

9.2 Semi-discrete finite volume scheme

Consider the integral formulation (2.1) with d = 2 over a control volume C. We define
the cell-averaged value of the conserved variable U over the volume C by

Ũ(t) =
1

|C|

∫
C

U(x, t) dx,

where |C| is the cell volume. Let N be the set of control volumes sharing an edge with C,
i.e., N = { all C ′ such that C ′ 6= C and ∂C ∩ ∂C ′ 6= ∅}. Thus, we have

|C|dŨ

dt
= −

∫
∂C

F(U,n)dS = −
∑
C′∈N

∫
∂C∩∂C′

F(U,n)dS, (9.3)

where the notation F(U,n) is defined in (3.13). We now look at the cell-centered and
vertex-centered semi-discrete formulation independently.
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9.2. Semi-discrete finite volume scheme

9.2.1 Cell-centered semi-discrete scheme

As discussed in Section 9.1.1, the control volumes for a cell-centered scheme are the
primary triangles. For each triangle TI , we use the notation UI to represent the cell
average value. Thus (9.3) can be written as

|TI |
dUI

dt
= −

∑
J∈I

∫
∂TI∩∂TJ

F(U,n)dS. (9.4)

The integrals are approximated using the mid-point quadrature rule, which is second-

i

j

GI

GJ

MijTI

TJ

Figure 9.5: Evaluation of flux for cell-centered scheme.

order accurate. The semi-discrete scheme is written as

|TI |
dUI

dt
= −

∑
J∈I

FIJ , (9.5)

where FIJ := F(UI ,UJ ,nIJ) is the flux approximation at the edge mid-point Mij (see
figure 9.5). For a higher order approximation, one could use an N-point Gauss-Legendre
quadrature. The numerical flux should have the following crucial properties

1. Consistency:
F(U,U,n) = F(U,n).

2. Conservation:

F(U1,U2,n) = −F(U2,U1,−n) ∀ U1,U2,n.

We are interested in constructing central fluxes, to which suitable dissipation is added
at a later stage to ensure stability. Thus, we wish to analyse the approximation of such
central schemes. We consider the simplest central flux of the form

F(UI ,UJ ,nIJ) =
1

2

[
F(UI ,nIJ) + F(UJ ,nIJ)

]
. (9.6)
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Assuming sufficient smoothness, the Taylor series expansion of the exact solution about
a point x0 gives

U(x, t) =
r−1∑
k=0

1

k!

∑
|α|=k

(x− x0)α∂αU(x0, t)dx +O(|x− x0|r),

for some r > 1. Thus, the cell average value in TI can be expanded around the centroid
GI as

UI(t) = U(xGI , t) +
1

|TI |

∫
TI

∇xU(xGI , t) · (x− xGI )dx +O(h2),

where h denotes an appropriate length scale of the triangulation, for instance the length
of the longest edge. The centroid satisfies the relation

1

|TI |

∫
TI

(x− xGI )dx = 0,

which leads to the approximation

UI(t) = U(xGI , t) +O(h2). (9.7)

Using (9.7) in the central flux (9.6) leads to

F(UI ,UJ ,nIJ) =
1

2

[
F
(
U(xGI , t),nIJ

)
+ F

(
U(xGJ , t),nIJ

)]
+O(h2). (9.8)

Furthermore,

F
(
U(xGI , t),nIJ

)
= F

(
U(xMij

, t),nIJ
)

+∇xF
(
U(xMij

, t),nIJ
)
· (xGI − xMij

) +O(h2),

F
(
U(xGJ , t),nIJ

)
= F

(
U(xMij

, t),nIJ
)

+∇xF
(
U(xMij

, t),nIJ
)
· (xGJ − xMij

) +O(h2).
(9.9)

Looking at Figure 9.5, we note that Gi,Mij, Gj need not be collinear and |xGI − xMij
| 6=

|xMij
− xGJ | in general. Thus, the O(h) contribution in (9.9) will not cancel out when

both expression are added, leading to

F(UI ,UJ ,nIJ) = F(U(xMij
, t),nIJ) +O(h).

9.2.2 Vertex-centered semi-discrete scheme

In this case, the control volumes are taken to be dual cells Ωi around each vertex i, with
the notation Ui = Ũ. Thus (9.3) can be written as

|Ωi|
dUi

dt
= −

∑
j∈i

∫
∂Ωi∩∂Ωj

F(U,n)dS. (9.10)

The integrals are approximated using a rule similar to the mid-point quadrature∑
j∈i

∫
∂Ωi∩∂Ωj

F(U,n)dS ≈
∑
j∈i

F
(
U(Mij, t),nij

)
, (9.11)
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i j

Ωi

Ωj

Mij

Figure 9.6: Evaluation of flux for vertex-centered scheme.

which is also second-order accurate [65]. Here Mij is the mid-point of the primary edge
joining vertices i and j, as shown in Figure 9.6. The flux evaluation at the mid-point Mij

is approximated by the central flux

Fij := F(Ui,Uj,nij) =
1

2

[
F(Ui,nij) + F(Ujnij)

]
. (9.12)

Assuming sufficient smoothness, we expand the cell average in Ωi about the vertex i

Ui(t) = U(xi, t) +
1

|Ωi|

∫
Ωi

∇xU(xi, t) · (x− xi)dx +O(h2).

Unfortunately, the vertex i need not be the barycenter of the dual cell Ωi, thus

1

|Ωi|

∫
Ωi

(x− xi)dx 6= 0,

in general. Thus, unlike the cell-centered approach, we only have a first-order approxi-
mation

Ui(t) = U(xi, t) +O(h),

which in turn leads to the following first-order approximation when used with the central
flux

F(Ui,Uj,nij) =
1

2
(F(U(xi, t),nij) + F(U(xj, t),nij)) +O(h). (9.13)

Additionally

F
(
U(xi, t),nij

)
= F

(
U(xMij

, t),nij
)

+∇xF
(
U(Mij, t),nij

)
· (xi − xMij

) +O(h2),

F
(
U(xj, t),nij

)
= F

(
U(xMij

, t),nij
)

+∇xF
(
U(Mij, t),nij

)
· (xj − xMij

) +O(h2).
(9.14)
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Since the vertices i, j and the face mid-pointMij are collinear with |xi−xMij
| = |xMij

−xj|,
the O(h) contributions in (9.14) will cancel out when the two expansions are added
together. However, we are still left with the O(h) term in (9.13) which appeared as a
result of the vertices not corresponding to the barycenters of the dual cells. Thus, we only
have

F(Ui,Uj,nij) = F(U(xMij
, t),nij) +O(h).

We conclude from the above discussion that for an arbitrary unstructured mesh, both
cell-centered and vertex-centered approaches lead to first-order schemes when central
fluxes are used. However, the first-order error terms may cancel out if the mesh is better
behaved, leading to a second-order global spatial error. The vertex-centered approach
has a big advantage when the viscous components of Navier-Stokes are included in the
formulation (see Chapter 10). Firstly, the stencil to obtain the viscous fluxes is more
compact. Secondly, the (voronoi) dual cells can be used to generate flat rectangular cells,
which are crucial in approximating solutions in boundary layers. An example of a flat
celled mesh for the NACA-0012 airfoil is shown in Figure 9.7. For the rest of this chapter,
we use the vertex-centered scheme

|Ωi|
dUi

dt
= −

∑
j∈i

Fij, (9.15)

with Fij being a consistent and conservative numerical flux.

(a) Primary mesh

(b) Voronoi dual mesh

Figure 9.7: Mesh for a NACA-0012 airfoil. The dual cells of the Voronoi mesh near the
boundary of the airfoil are flat and rectangular, making it suitable for approximating bound-
ary layers in viscous flows.
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9.3. Entropy conservative and entropy stable schemes

9.3 Entropy conservative and entropy stable schemes

Having laid the groundwork for finite volume schemes on unstructured meshes, we now
aim to construct entropy stable schemes to approximate (2.2). In other words, we want
the numerical scheme to satisfy a discrete version of the entropy condition (2.9). This has
already been discussed in Chapter 5 for finite difference schemes on Cartesian meshes. An
analogous formulation can be made for finite volume schemes. Following the approach
of Tadmor [115] and the recent paper [74], the first step is the design of an entropy
conservative finite volume scheme.

9.3.1 Entropy conservative scheme

Definition 9.3.1. The numerical scheme (9.15) is said to be entropy conservative if it
satisfies the discrete entropy relation

dη(Ui)

dt
+

1

|Ωi|
∑
j∈i

q∗ij = 0, (9.16)

where q∗ij is a consistent numerical entropy flux.

We introduce the notations

∆(· )ij = (· )j − (· )i, (· )ij =
(· )i + (· )j

2
,

and the entropy potential

Ψ(U,n) := 〈V(U),F(U,n)〉 − q(U,n), (9.17)

where q(U,n) is defined in (3.13). The following theorem gives a sufficient condition to
construct an entropy conservative numerical flux, which is a variant of the result proved
for cell-centered schemes in [74].

Theorem 9.3.1. The numerical scheme (9.15) with the flux F∗ is entropy conservative
if 〈

∆Vij,F
∗
ij

〉
= Ψ(Uj,nij)−Ψ(Ui,nij). (9.18)

Specifically, it satisfies (9.16) with numerical entropy flux given by

q∗ij = q∗(Ui,Uj,nij) =
〈
Vij,F

∗
ij

〉
− 1

2
(Ψ(Uj,nij) + Ψ(Ui,nij)) .
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Proof. Taking the inner-product of (9.15) with the entropy variables Vi, we get

d
dt
η(Ui) = − 1

|Ωi|
∑
j∈i

〈
Vi,F

∗
ij

〉
= − 1

|Ωi|
∑
j∈i

〈(
Vij −

1

2
∆Vij

)
,F∗ij

〉
= − 1

|Ωi|
∑
j∈i

(〈
Vij,F

∗
ij

〉
− 1

2
(Ψ(Uj,nij)−Ψ(Ui,nij))

)
= − 1

|Ωi|
∑
j∈i

q∗ij −
1

|Ωi|
∑
j∈i

Ψ(Ui,nij)

= − 1

|Ωi|
∑
j∈i

q∗ij,

since we can show that
∑

j∈i Ψ(Ui,nij) = 0 using (9.2).

Remark 9.3.1. The KEPEC and ROE-EC fluxes introduced in Chapter 5 for finite dif-
ference schemes, also serve as important examples of entropy conservative fluxes for finite
volume schemes, since they satisfy (9.18). Their expressions in the context of finite volume
schemes are given in Appendix C.

Remark 9.3.2. The condition for kinetic energy preservation can be extended to finite
volume schemes on unstructured grids [59] as

Fm = pn + uF ρ, (9.19)

where p and F ρ are any consistent approximations for pressure and the mass flux re-
spectively. Since both KEP and KEPEC fluxes (see Appendix C) satisfy (9.19), they are
kinetic energy preserving.

9.3.2 First order entropy stable scheme

While entropy is conserved for smooth solutions, it is dissipated near discontinuities in
accordance to the entropy condition (2.9). Hence, we introduce additional dissipation
terms to construct entropy stable schemes.

Definition 9.3.2. The numerical scheme (9.15) is said to be entropy stable if it satisfies
the discrete entropy relation

dη(Ui)

dt
+

1

|Ωi|
∑
j∈i

qij 6 0, (9.20)

where qij is a consistent numerical entropy flux.

Entropy stable schemes can be characterized by satisfaction of an E-flux condition,
which is a generalized extension of Osher’s E-flux condition [83] to system of conservation
laws. This has been proved for the cell-centered setup in [74], which we adapt for vertex-
centered schemes.
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Theorem 9.3.2. The semi-discrete numerical scheme (9.15) with numerical flux Fij sat-
isfying the E-flux condition

〈∆Vij,Fij〉 6 Ψ(Uj,nij)−Ψ(Ui,nij), (9.21)

is entropy stable; specifically, it satisfies the discrete entropy inequality (9.20) with nu-
merical entropy flux given by

qij =
〈
Vij,Fij

〉
− 1

2
(Ψ(Uj,nij) + Ψ(Ui,nij)) .

Proof. Taking the inner-product of (9.15) with Vi and following the algebraic manipula-
tions similar to those in Theorem 9.3.1, we get

d
dt
η(Ui) = − 1

|Ωi|
∑
j∈i
〈Vi,Fij〉

= − 1

|Ωi|
∑
j∈i

[〈
Vij,Fij

〉
− 1

2
〈∆Vij,Fij〉

]
6 − 1

|Ωi|
∑
j∈i

[〈
Vij,Fij

〉
− 1

2
(Ψ(Uj,nij)−Ψ(Ui,nij))

]
= − 1

|Ωi|
∑
j∈i

qij.

Several such entropy stable fluxes satisfying the E-flux have been proposed in [6]. Al-
ternately, we can consider the approach proposed by Tadmor [116, 35, 74], where entropy
variable based numerical dissipation is augmented to the entropy conservative numerical
flux F∗ij in the form

Fij = F∗ij −
1

2
Dij∆Vij, (9.22)

for a symmetric and positive semi-definite matrix Dij. The diffusion matrix must also
satisfy Dij = Dji to ensure that the numerical flux is conservative. Clearly (9.22) satisfies
the E-flux condition, provide F∗ij satisfies (9.18). As discussed in Section 5.5.1, we choose
the matrix Dij of the form

Dij = RijΛijR
>
ij, (9.23)

where R = R(U,n) is the matrix of scaled eigenvectors of the flux Jacobian ∂UF(U,n)
and Λ = Λ(U,n) is the non-negative diagonal matrix depending on the eigenvalues of the
flux Jacobian. In particular, we choose the Roe-type dissipation operator. The expression
for the dissipation operator in the context of finite volume schemes is given in Appendix C.

9.3.3 High-order diffusion operators

Since ∆Vij = O(h) for smooth solutions, the numerical flux (9.22) leads to a first-order
accurate scheme. A higher-order scheme can be obtained by suitably reconstructing the
solution to the cell interfaces. Consider the cell interface between two control volumes
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Ωi and Ωj. Corresponding to this particular cell interface, let Vij and Vji be the recon-
structed values of V from cell Ωi and Ωj respectively, and define the jump at the interface
by

JVKij := Vji −Vij. (9.24)

Using the higher order jump (9.24) instead of ∆Vij in the numerical flux (9.22), leads to
a high-order flux. The following lemma (proved for Cartesian meshes in Section 5.5.2)
gives a sufficient condition for the reconstruction, ensuring that the entropy stability of
the scheme is retained.

Lemma 9.3.1. For each pair of vertices (i, j) which are connected to one another by a
primary edge, let Rij be non-singular, let Λij be any non-negative diagonal matrix, and
define the numerical diffusion matrix

Dij = RijΛijR
>
ij.

Let Vij and Vji be the reconstructed values of the entropy variables at the interface between
Ωi and Ωj. Assume that the reconstruction ensures the existence of a diagonal matrix
Bij > 0 such that

JVKij =
(
R>ij
)−1

BijR
>
ij∆Vij. (9.25)

Then the scheme with the numerical flux

Fij = F∗ij −
1

2
DijJVKij, (9.26)

is entropy stable with numerical entropy flux

qij := q∗ij −
1

2
V
>
ijDijJVKij.

Proof. As in the proof of Lemma 9.3.2, consider (9.15) with the flux defined by (9.26),
and take the inner-product with the entropy variables Vi to get

d
dt
η(Ui) = − 1

|Ci|
∑
j∈i
〈Vi,Fij〉

= − 1

|Ci|
∑
j∈i

q∗ij +
1

2|Ci|
∑
j∈Ni

〈
Vij −

1

2
∆Vij,DijJVKij

〉
= − 1

|Ci|
∑
j∈i

[
q∗ij −

1

2

〈
Vij,DijJVKij

〉]
− 1

4|Ci|
∑
j∈i

〈
∆Vij,RijΛijBijR

>
ij∆Vij

〉
.

Since RijΛijBijR
>
ij is symmetric and positive semi-definite, we get

d
dt
η(Ui) +

1

|Ci|
∑
j∈i

qij 6 0.
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Remark 9.3.3. The quantities Rij, Λij are evaluated at some average value corresponding
to Vi, Vj. Note that F∗ij = F∗(Vi,Vj,nij), i.e., it is evaluated using the solution at the
vertices and only the dissipation flux makes use of the reconstructed values.

Remark 9.3.4. On Cartesian grids, the interpolation formula (5.14) can be used to con-
struct high-order entropy conservative fluxes. However, no such formula is known at
present in the context of entropy conservative finite volume fluxes on unstructured meshes.
The entropy conservative fluxes on unstructured grids are only (formally) second-order ac-
curate. Thus, we restrict ourselves to the linear reconstruction of entropy variables at the
interface, to obtain second-order dissipation operators.

9.3.4 Reconstruction procedure and the sign-property

In order to use Lemma 9.3.1, we describe a reconstruction procedure that satisfies (9.25).
As done in Section 5.5.3, we define by Z = R>ijV the scaled entropy variables for the
interface between the neighbouring cells Ωi and Ωj. Let Zij, Zji be the reconstructed
values of Z at the interface from cell Ωi and Ωj respectively. We further define

Vij = (R>ij)
−1Zij, Vji = (R>ij)

−1Zji =⇒ JVKij = (R>ij)
−1JZKij.

Thus, the dissipation terms in the flux given by (9.26) can be written as DijJVKij =
RijΛijJZKij, with the condition (9.25) reducing to the component-wise sign-property Z:

sign
(
JZKij

)
= sign

(
∆Zij

)
. (9.27)

We describe a slope-limited linear reconstruction procedure of scaled entropy variables
appearing in the dissipation terms, which satisfies the sign-property. For neighbouring
control volumes Ωi and Ωj, the scaled entropy variables with respect to the interface
between vertices i and j are given by

Zi = R>ijVi, Zj = R>ijVj. (9.28)

In order to perform the reconstruction, we need more information along the line joining
vertices i and j, so that we can get some information about the smoothness of the function.
Let us extend the line by an equal length on either side, to obtain the additional vertices
i− 1 and j + 1 (Figure 9.8(a)). Assuming the values Zi−1, Zj+1 are known, we define
following differences

• The forward differences

∆f
ij = ∆Zij, ∆f

ji = Zj+1 − Zj. (9.29)

• The backward differences

∆b
ij = Zi − Zi−1 ∆b

ji = ∆Zij. (9.30)

The reconstructed values of Z at the interface are given by

Zij = Zi +
1

2
M
(

∆f
ij,∆

b
ij

)
, Zji = Zj −

1

2
M
(

∆f
ji,∆

b
ji

)
. (9.31)

where we have used the minmod slope limiter function given by (4.9). There are several
methods available in the literature to obtain the additional information Zi−1 and Zj+1,
which need not correspond to actual points in the mesh.
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• The values at the vertices i − 1 and j + 1 can be evaluated through continuation
and interpolation from neighbouring vertices [11], as shown in Figure 9.8(a).

• The differences ∆b
ij and ∆f

ji can be estimated if we know the gradients of Z at the
vertices [133].

• For the edge joining the vertices i and j, one considers the upstream and downstream
triangles Tij and Tji through which the extended edge would pass (see Figure 9.8(b)).
The gradients evaluated on these triangles can be used instead of gradients at the
vertices [11, 99, 4].

In our reconstruction procedure, we use vertex gradients to evaluate the differences as
follows

∆f
ji = Zj+1 − Zj = 2∇hZj· (xj − xi)−∆Zij, (9.32)

∆b
ij = Zi − Zi−1 = 2∇hZi· (xj − xi)−∆Zij. (9.33)

The approximation of the gradients at the vertices, is described in Section 9.3.5.

i
ji− 1 j + 1

(a)

i
jTij Tji

(b)

Figure 9.8: Stencil for linear reconstruction (a) extension and interpolation, (b) extension
into upstream and downstream triangles.

Lemma 9.3.2. The reconstruction of the scaled entropy variables described by (9.31),
(9.29) and (9.30) satisfies the sign property (9.27).

Proof. For any component Z of Z, the reconstruction scheme gives

Zji − Zij = (Zj − Zi)−
1

2

[
M
(

∆f
ji,∆

b
ji

)
+M

(
∆f
ij,∆

b
ij

)]
.

If Zj − Zi > 0, then

M
(

∆f
ij,∆

b
ij

)
6 ∆f

ij, M
(

∆f
ji,∆

b
ji

)
6 ∆b

ji = ∆f
ij.

Thus,

Zji − Zij > (Zj − Zi)−
1

2

[
2∆f

ij

]
= 0.
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Similarly, if Zj − Zi 6 0, then

M
(

∆f
ij,∆

b
ij

)
> ∆f

ij, M
(

∆f
ji,∆

b
ji

)
> ∆b

ji = ∆f
ij,

giving us

Zji − Zij 6 (Zj − Zi)−
1

2

[
2∆f

ij

]
= 0.

Hence, the reconstruction satisfies the sign property.

Remark 9.3.5. The above reconstruction with the minmod limiter is one possible op-
tion which has the sign-property. One could instead use the second-order ENO scheme
(ENO-2), which also satisfies the sign-property. Note that the ENO-2 scheme reduces
to the minabs limiter. Numerical tests have yielded almost indistinguishable results with
both minmod and ENO-2 reconstruction. Thus, we adhere to presenting results with the
minmod limiter.

Remark 9.3.6. Either of the reconstruction methods described above would lead to the
sign-property, when used with the minmod or minabs limiter. What is crucial to obtain
the sign-property is that we evaluate ∆f

ij = ∆b
ji = ∆Zij.

9.3.5 Computation of gradients

The second-order limited reconstruction described above requires the evaluation of vertex
gradients of scaled entropy variables. We evaluate these gradient as

∇hZi = R>ij∇hVi, (9.34)

where ∇hVi must be numerically approximated.
Consider the vertex i and the set of neighbouring primary triangular cells denoted

by T ∈ i. Using the Green’s theorem combined with the trapezoidal rule for integration
[26, 1], the gradient of a scalar valued function φ on each triangle T is approximated by

∇hφT =
1

|T |

[
(φi + φj)

2
nTk +

(φj + φk)

2
nTi +

(φk + φi)

2
nTj

]
= − 1

2|T |
[
φin

T
i + φjn

T
j + φkn

T
k

]
.

(9.35)

This approximation is exact for affine functions, and thus second-order accurate. Similarly,
the gradient approximation of a vector valued function φ ∈ Rm, is given by

∇hφT =
1

|T |

[
(φi + φj)

2
⊗ nTk +

(φj + φk)

2
⊗ nTi +

(φk + φi)

2
⊗ nTj

]
= − 1

2|T |
[
φi ⊗ nTi + φj ⊗ nTj + φk ⊗ nTk

]
.

(9.36)

Finally, the gradient at vertex i is approximated for the scalar φ or the vector φ by

∇hφi =

∑
T∈i
|T |∇hφT∑
T∈i
|T | , ∇hφi =

∑
T∈i
|T |∇hφT∑
T∈i
|T | , (9.37)
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respectively. Note that the expression in (9.37) are also exact for affine functions and
hence second-order accurate. The gradient of the entropy variables at the vertices are
approximated using (9.36) and (9.37).

Remark 9.3.7. In actual implementation of the scheme, we never compute Vij, Vji,
which would be expensive since it requires the inversion of the matrix Rij. The numerical
flux can be directly computed as

Fij = F∗ij −
1

2
RijΛij(Zji − Zij), (9.38)

thus avoiding some costly operations.

Remark 9.3.8. One could also approximate ∇hZi and ∇hZT directly from the scaled
entropy variables at each vertex. Since the scaling depends on the particular dual mesh
interface at which the reconstruction is being performed, this would require the computation
of several vertex and triangular gradients for each vertex and triangle. In order to avoid
this additional computational cost and storage requirement, we simply scale the gradients
evaluated for the original entropy variables, as given by (9.34).

9.4 Numerical results

We now present the numerical results of the scheme discussed above on several standard
two dimensional test cases. The numerical flux nomenclatures KEPEC, KEPES, KEPES-
TeCNO and Roe have already been introduced in the beginning of Section 5.8. In addition
we introduce the KEPES2 flux, which is identical to the KEPES-TeCNO flux, except the
scaled entropy variables are reconstructed using an unlimited second order-reconstruction

Zij = Zi +
1

2
∇hZi· (xj − xi), Zji = Zj −

1

2
∇hZj· (xj − xi).

Note that KEPES2 is not necessarily entropy stable, as the unlimited reconstruction need
not satisfy the sign-property.

The semi-discrete scheme is integrated in time using the explicit SSP-RK3. The local
time steps are evaluated as

∆ti =
CFL · |Ωi|

λi
, λi =

∑
j∈i

[|ui·nij|+ ai|nij|] .

In all test cases we consider the ideal gas with γ = 1.4, except when indicated otherwise.

9.4.1 Smooth density wave

In order to test the order of accuracy of the proposed schemes, we consider the simple
problem of a smooth advecting wave on a domain [0, 1] × [0, 1] with periodic boundary
conditions. The initial conditions are given by

ρ = 10 + sin(2πx) sin(2πy), p = 5, u1 = u2 = 1,
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which corresponds to the ρ profile moving with a constant velocity (1, 1) and constant
pressure. The solution completes one full cycle at time tf = 1. For the simulations,
we choose CFL=0.4. To compute the order of accuracy, we consider a series of nested
triangular primary meshes. The first mesh, denoted by L0, consists of 40 uniformly spaced
vertices each in the horizontal and vertical directions. The base mesh is refined by splitting
each primary triangle into four similar triangles to obtain mesh Ln, where n refers to the
number of mesh refinements. With each refinement, the number of vertices are doubled
in both the horizontal and vertical directions. Thus, mesh Ln contains 2n × 40 vertices
in each direction. The corresponding Voronoi dual meshes resemble Cartesian grids (for
instance, see the mesh shown in Figure 9.10 for the shock-tube problem).

The rate of convergence for the schemes in the discrete L1
h and L∞h norms are shown

in Table 9.1. The central entropy conservative KEPEC scheme is second-order accurate
due to the cancellation of first-order terms. The KEPES is only first-order accurate due
to the O(h) jump term in the dissipation operator. The convergence rate improves to a
certain degree with a minmod reconstruction of the jump in the KEPES-TeCNO scheme.
The minmod limiter leads to clipping of smooth extrema [84, 85]. This becomes even
more evident by observing the rate of convergence in L∞h norm. In the KEPES2 flux,
an unlimited second-order reconstruction is used for the jump in the dissipation term.
This helps in the recovery of full second-order accuracy, with the errors for KEPEC and
KEPES2 being almost identical.

On unstructured meshes (with Voronoi dual grids), a purely central scheme such as
KEPEC, is unable to completely filter out the small scale noise caused by dispersive errors,
even with mesh refinement (see Figure 9.9). This leads to problems in convergence, giving
an incorrect order of convergence. Artificial dissipation needs to be added for simulations
on unstructured meshes, especially in the absence of any other form of physical diffusion.
The analysis in Section 9.2.2 suggests that the central KEPEC flux is first-order accurate
on general unstructured meshes. Thus, the KEPES and KEPES2 schemes (both of which
use KEPEC as the central flux) give first-order convergence with mesh refinement, as
indicated in Table 9.2, although KEPES2 gives much smaller errors.

9.4.2 Modified shock tube problem

This corresponds to the Sod type test case described in Section 5.8.2. We consider a
rectangular domain [0, 1]× [0, 0.4] and discretize it with 100 vertices in the direction of the
flow, and 80 vertices along the flow cross-section. The primary and Voronoi dual meshes
used for the simulations are shown in Figure 9.10. The left state is given by (ρ, u1, u2, p)L =
(1.0, 0.75, 0.0, 1.0) and the right state is given by (ρ, u1, u2, p)R = (0.125, 0.0, 0.0, 0.1), with
the initial discontinuity along x = 0.3.

The Roe scheme gives an entropy violating jump in the expansion region where the flow
becomes sonic, as shown in Figure 9.11. The entropy stable KEPES and KEPES-TeCNO
schemes, are able to overcome this issue to a large extent, The comparison in Figure 9.12
shows that the solutions with KEPES-TeCNO are much better resolved as compared to
KEPES. Convergence is demonstrated in Figure 9.13, where the solutions are evaluated
using KEPES-TeCNO on three levels of uniform grid refinements, with the number of
vertices along the streamwise direction being N = 100, 200 and 400 respectively.

The KEPES and KEPES-TeCNO also give rise to a small jump near the sonic point,
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KEPEC KEPES

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

40 1.72e-02 - 1.14e-01 - 2.57e-01 - 2.54e-00 -
80 4.21e-03 2.03 2.75e-02 2.05 1.59e-01 0.69 1.57e-00 0.69
160 1.04e-03 2.02 6.87e-03 2.00 8.91e-02 0.84 8.79e-01 0.84
320 2.58e-04 2.01 1.69e-03 2.02 4.72e-02 0.92 4.65e-01 0.92
640 6.44e-05 2.00 4.26e-04 1.99 2.43e-02 0.96 2.39e-01 0.96

KEPES-TeCNO KEPES2

N L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

40 4.35e-02 - 7.32e-01 - 1.77e-02 - 1.38e-01 -
80 1.19e-02 1.86 3.18e-01 1.20 4.73e-03 2.06 3.00e-02 2.19
160 3.55e-03 1.75 1.32e-01 1.26 1.16e-03 2.02 7.01e-03 2.10
320 1.01e-03 1.81 5.43e-02 1.29 2.87e-04 2.01 1.69e-03 2.05
640 2.80e-04 1.85 2.20e-02 1.30 6.44e-05 2.00 4.26e-04 1.99

Table 9.1: Order of convergence for the smooth density wave problem.

KEPES KEPES2

h L1
h L∞h L1

h L∞h
error rate error rate error rate error rate

h0 2.32e-01 - 2.17e-00 - 2.16e-02 - 2.35e-01 -
h1 1.45e-01 0.68 1.31e-00 0.72 6.13e-03 1.81 9.98e-02 1.23
h2 8.17e-02 0.83 7.33e-01 0.84 2.22e-03 1.47 5.27e-02 0.92
h3 4.35e-02 0.91 3.89e-01 0.91 1.01e-03 1.14 2.69e-02 0.96
h4 2.24e-02 0.95 2.00e-01 0.96 4.92e-04 1.03 1.36e-02 0.98

Table 9.2: Order of convergence for the smooth density wave problem on unstructured
mesh, with base mesh size h0 = 2.5× 10−2 and refined mesh size hi = h0/2

i.
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(a) mesh size h1 (b) mesh size h2

(c) mesh size h3 (d) mesh size h4

Figure 9.9: Smooth density wave problem with KEPEC flux on unstructured mesh, with
base mesh size h0 = 2.5× 10−2 and refined mesh size hi = h0/2

i.
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which reduces with mesh refinement unlike the jump observed with the Roe scheme (see
Figure 5.6). This jump could be attributed to the absence of the right amount of dissi-
pation. Using the entropy consistent modification (5.24) can fix this issue, as shown in
Figures 9.14 and 9.15. Focusing on the region near the sonic point in Figures 9.14(b) and
9.15(b), we observe that for αEC = 1/6 the jump reduces significantly.

(a) Primal grid (b) Voronoi dual grid

Figure 9.10: Grid used for shock tube problem.

9.4.3 Supersonic flow over wedge

This test case involves a weak oblique shock, which occurs when a supersonic flow is
turned into itself due to the presence of a wedge. The wedge is inclined at an angle of 10
degrees to the horizontal. The farfield Mach number is 2, with slip boundary conditions
on the wedge. The mesh (see Figure 9.16) has 18848 vertices and we use median dual cells
as control volumes. As can be seen in Figure 9.17, the shock profile is quite dissipated
with KEPES. But, the minmod reconstruction in KEPES-TeCNO scheme leads to a much
sharper shock profile, that is comparable to the one computed by the Roe scheme with
MUSCL type reconstruction and van Albada limiter (see Section 4.1.4).

9.4.4 Transonic flow past NACA-0012 airfoil

This is an example of a symmetric NACA-0012 airfoil placed in a freestream Mach number
of 0.85, with an angle of attack of 2 degrees. A zoomed view of the primary mesh and the
corresponding median dual mesh used for this test case, is shown in Figure 9.18. The mesh
contains 180 points on the airfoil surface, and 20 points on the farfield boundary which
is a circle, with a total of 6402 vertices. The flow develops shocks both on the upper and
lower airfoil surfaces. The Mach contour plots in Figure 9.19 show that KEPES-TeCNO
gives much better shock resolution than KEPES, and comparable to the high-resolution
Roe-MUSCL scheme.

The pressure coefficient for compressible flows is given by

Cp =
2

γM2
∞

(
p

p∞
− 1

)
,

where p is the pressure at the vertices, while p∞ and M∞ are the farfield pressure and
Mach numbers respectively. We consider the vertex values of Cp on the surface of the
airfoil, as shown in Figure 9.20. The x-axis represents the normalized wingspan, while
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Figure 9.11: Modified shock tube problem using first order schemes.
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Figure 9.12: Comparison of KEPES and KEPES-TeCNO schemes.
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Figure 9.13: Density plot; grid refinement study with KEPES-TeCNO.
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Figure 9.14: Density plot for N=100 and the KEPES scheme, with the entropy consistent
modification.
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Figure 9.15: Density plot for N=100 and the KEPES-TeCNO scheme, with the entropy
consistent modification.
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(a) Primary (b) Median dual

Figure 9.16: Mesh for flow over wedge.

(a) KEPES (b) KEPES-TeCNO

(c) Roe (MUSCL)

Figure 9.17: Mach number plots for a supersonic flow past a wedge.
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(a) Primary (b) Median dual

Figure 9.18: Mesh for flow past NACA-0012 airfoil.

(a) KEPES (b) KEPES-TeCNO

(c) Roe (MUSCL)

Figure 9.19: Mach number, 30 equally spaced contours between 0.04 and 1.5.
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the y-axis represents the inverted pressure coefficient. Thus, the upper surface of the
wing, which has a much lower pressure distribution as compared to the lower surface,
appears at the top of the plot. There is a sudden change in pressure across the shock
that develops on both surfaces, and is clearly visible in the Cp plots. The area enclosed
by the graph in the plots represents the lift experienced by the airfoil. Again, the high
resolution KEPES-TeCNO was indistinguishable in accuracy compared to the standard
high resolution Roe-MUSCL scheme.
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Figure 9.20: Pressure coefficient plots of the surface of the airfoil with p∞ = 0.9886, M∞ =
0.85.
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9.4.5 Supersonic flow past a cylinder

Most shock-capturing numerical schemes, except for a few highly dissipative schemes like
the Rusanov scheme, can lead to numerical instabilities, particularly when approximating
strong shocks. One of the most common anomalies is the carbuncle phenomenon [93, 94],
which is produced when computing a supersonic flow past a blunt body such as a circular
cylinder. Instead of having a smooth bow shock profile upstream of the cylinder, a
protuberance appears ahead of the bow shock along the stagnation line. This effect seems
to be more pronounced the more closely the grid is aligned to the bow shock.

Simulations were performed for the inviscid supersonic flow over a semi-cylinder. The
primary triangular grid and the corresponding median and Voronoi dual meshes are shown
in Figure 9.21. The Voronoi cells lead to nearly structured type grids, and can thus give
rise to the carbuncle problem, since the shock will be aligned with the cell faces to a greater
extent compared to the median dual cells. At free-stream Mach numberM∞ = 2, KEPES
and KEPES-TeCNO give carbuncle free solutions on both median dual and Voronoi dual
meshes, as can be seen in Figure 9.22. The bow shock is well resolved in each case.
Similar results were observed when the schemes were used to simulate a hypersonic flow
with M∞ = 20, as shown in Figure 9.23.

(a) Primal grid (b) Median dual grid (c) Voronoi dual grid

Figure 9.21: Grid used for supersonic cylinder problem.
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(a) KEPES (b) KEPES-TeCNO (c) KEPES (d) KEPES-TeCNO

Figure 9.22: Density contours for supersonic cylinder, M∞ = 2. (a)-(b) median dual grid;
(c)-(d) Voronoi dual grid.

(a) KEPES (b) KEPES-TeCNO (c) KEPES (d) KEPES-TeCNO

Figure 9.23: Density contours for supersonic cylinder, M∞ = 20. (a)-(b) median dual grid;
(c)-(d) Voronoi dual grid.
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9.4.6 Subsonic flow past a cylinder

We consider an inviscid flow past a full cylinder at a low Mach number of 0.3. The mesh
used for this problem is shown in Figure 9.24. The steady state solution has both top-
bottom and left-right symmetry. The first-order KEPES solution loses its symmetry due
to the excessive dissipation, as shown in Figure 9.25. The KEPES-TeCNO does a much
better job at preserving the symmetry property, comparable to the approximate solution
given by the KEPES2 scheme which uses an unlimited second-order reconstruction in the
dissipation term.

(a) Primary (b) Median dual

Figure 9.24: Mesh for a subsonic flow past a cylinder.

(a) KEPES (b) KEPES-TeCNO (c) KEPES2

Figure 9.25: Mach number, 30 equally spaced contours between 0.001 and 0.7.

The flow under consideration is nearly isentropic, i.e., the physical entropy of the flow
around the cylinder should be nearly constant. Note that the physical entropy is given
by s̃ = s̃0 + s (see Section 3.1.2). Since s̃0 is an arbitrary constant, the quantity s is
constant for an isentropic flow. To demonstrate the ability of the schemes to preserve this
constancy, the bounds in s obtained with each scheme, and their percentage deviation
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from the free-stream value s∞, are mentioned in Table 9.3. We notice that KEPES gives
the largest positive deviation, KEPES2 gives almost negligible positive deviation, while
the limited KEPES-TeCNO scheme lies somewhere in between. Both the entropy stable
schemes show no negative deviations, while the KEPES2 scheme gives almost negligible
negative deviation. Although the KEPES2 performs the best in this scenario, we cannot
theoretically prove any stability estimates with it. Moreover, the unlimited KEPES2
would perform rather poorly in the presence of shocks.

Scheme Minimum Maximum Percent deviation from s∞
KEPES 2.07147 2.08695 +0.747 % -0.000 %

KEPES-TeCNO 2.07147 2.07208 +0.029 % -0.000 %
KEPES2 2.07139 2.07153 +0.003 % -0.004 %

Table 9.3: Physical entropy bounds, with freestream s∞ = 2.07147.

9.4.7 Step in wind tunnel

This test case is described in [135] involves an inviscid supersonic flow past a step in a
wind tunnel, which is impulsively started with an initial Mach number of M = 3. The
wind tunnel is one unit length wide and three unit lengths long. The step is 0.2 unit
length high and is located 0.6 unit length from the left-hand end of the tunnel. At the
left boundary, one imposes an inflow boundary condition. The exit boundary condition
on the right has no effect on the flow, because the exit velocity is always supersonic. Slip
boundary conditions are applied along the top and bottom walls of the tunnel . The
simulation is run till tf = 4 with a CFL=0.6.

The flow develops several shocks which undergo further reflections. A shock triple
point intersection leads to the formation of a slip line. The corner of the step is the center
of a rarefaction fan and hence is a singular point of the flow. The grid is adapted to be
finer near the corner, where the spacing is of size ≈ 0.002 while the maximum spacing is
of size ≈ 0.01. The total number of grid points is 70970. A close-up of the mesh close
to the corner is shown in Figure 9.26. The density contours at time t = 4 are shown in
Figure 9.27 using the KEPES-TeCNO scheme, which is able to resolve the main features
of the flow very accurately.

Remark 9.4.1. The numerical tests show that the proposed entropy stable schemes are
able to preserve positivity of density and pressure, without any additional treatment on
unstructured grids.
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(a) Primary (b) Median dual

Figure 9.26: Mesh near the corner of of the forward step.

Figure 9.27: Density, 50 contour lines between 0.5 and 7.1 using KEPES-TeCNO at t = 4.
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10. Finite volume scheme for Navier-
Stokes equations

In Chapter 9 we introduced a vertex-centered finite volume scheme for the Euler equations,
which is provably entropy stable. In this chapter, we extend the finite volume scheme to
incorporate the viscous terms of Navier-Stokes equations. Based on the specific choice for
the entropy-entropy flux pair (3.8), the viscous terms are approximated in terms of the
entropy variables to exploit the symmetric formulation of the viscous fluxes. The final
scheme is shown to be entropy stable.

10.1 Mesh notations and discretization

Most of the mesh notations have already been introduced in Chapter 9. We adopt the
vertex-centered approach for evaluating the inviscid fluxes. The viscous fluxes, on the
other hand, are approximated by evaluating the contributions on each primary triangle
neighbouring a given vertex. We additionally define the following notations needed to
describe the finite-volume scheme

i ∈ T = { all vertices i belonging to triangle T } ,
T ∈ i = { all triangles T having vertex i } ,

Γ = { all boundary edges of the primary mesh } ,
Γi = { all boundary edges of the primary mesh having vertex i } ,

∂ΩT
i = ∂Ωi ∩ int(T ).

If we consider the intersection of a dual cell Ωi with a triangle T (see Figure 10.1), we
have

nTi = 2(n
(1)
ij + n

(2)
ik ).

10.1.1 Approximation of gradient and divergence operators

In Section 9.3.5, we approximated the gradient of scalar and vector valued functions on
triangles by (9.35) and (9.36) respectively. These approximations are used for an interior
triangle TI , i.e., a triangle with none of its faces in Γ. A triangle Te adjoining a boundary
face e ∈ Γ, with e joining vertices i, j as shown in Figure 9.1(b), will be termed as a
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i j

k

Ωi ∩ T

T

n
(1)
ij

n
(2)
ik

nT
i

Figure 10.1: Relation between outward normals of Ωi and T .

boundary triangle. The gradient approximation of a scalar function φ on Te is chosen as

∇hφTe =
1

|Te|

[
(φbi + φbj)

2
ne +

(φj + φk)

2
nTei +

(φk + φi)

2
nTej

]
, (10.1)

where φbi , φbj are obtained from prescribed boundary conditions. Similarly, the gradient of
a vector valued function φ ∈ Rm on Te is approximated by

∇hφTe =
1

|Te|

[
(φbi + φbj)

2
⊗ ne +

(φj + φk)

2
⊗ nTei +

(φk + φi)

2
⊗ nTej

]
. (10.2)

The gradient at the vertex i is approximated using (9.37). Note that the evaluation of
(9.36), (10.2) and (9.37) require the values of φ to be defined at the vertices.

We next approximate the first-order spatial partial derivatives of a vector ϑ ∈ Rm, at
the vertices. Integrating ∂xϑ over the dual cell Ωi gives us∫

Ωi

∂xϑ dx =

∫
∂Ωi\Γ

ϑn1dS +

∫
∂Ωi∩Γ

ϑn1dS =
∑
T∈i

∫
∂ΩTi

ϑn1dS +
∑
e∈Γi

∫
∂Ωi∩e

ϑn1dS,

where n = (n1, n2) is the unit normal vector to the faces of dual cell Ωi. We assume that
ϑ is defined on each triangle T by the constant vector ϑ(T ), with the same value used
for ϑ on ∂ΩT

i . Furthermore, we assume that the value of ϑ on the boundary edge e is
given by the constant vector value in the adjoining boundary triangle Te. Thus, we get
the following approximation for ∂xϑ at the vertex i

∂hxϑi =
1

|Ωi|

∑
T∈i
ϑ(T )

∫
∂ΩTi

n1dS +
∑
e∈Γi

ϑ(Te)

∫
∂Ωi∩e

n1dS


=

1

|Ωi|

[
1

2

∑
T∈i
ϑ(T )nTi,1 +

1

2

∑
e∈Γi

ϑ(Te)ne,1

]
,

(10.3)
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where nTi = (nTi,1, n
T
i,2) and ne = (ne,1, ne,2). Similarly, we can get the following expression

for ∂hyϑi

∂hyϑi =
1

|Ωi|

[
1

2

∑
T∈i
ϑ(T )nTi,2 +

1

2

∑
e∈Γi

ϑ(Te)ne,2

]
. (10.4)

Note that in the approximation (9.37), the function values are known at the vertices,
which is first used to find the gradient on triangles using (9.36), and then used to find the
gradient at the vertex. On the other hand, (10.3) and (10.4) assume that the function
values on triangles are directly available. With the approximations (10.3), we can prove
the following summation-by-parts property.

Theorem 10.1.1. Let the vectors φ,ϑ ∈ Rm be defined at the mesh vertices and on
triangles respectively. Then the following SBP property holds∑

i

〈
φi, ∂

h
xϑi
〉
|Ωi| = −

∑
T

〈
∂hxφ

T ,ϑ(T )
〉
|T |+

∑
e∈Γ

〈
φbi + φbj

2
,ϑ(Te)

〉
ne,1, (10.5)

where ∂hxϑi is evaluated at the vertices using (10.3), while ∂hxφ
T is evaluated on triangles

using (9.36) and (10.2). Note that Ωi is the dual cell centered at the vertex i.

Proof. Using the expression (10.3), we have∑
i

〈
φi, ∂

h
xϑi
〉
|Ωi| =

1

2

∑
i

∑
T∈i
〈φi,ϑ(T )〉nTi,1 +

1

2

∑
i

∑
e∈Γi

〈φi,ϑ(Te)〉ne,1.

Interchanging the order of summation and considering the summations over interior and
boundary triangles separately, we get∑

i

〈
φi, ∂

h
xϑi
〉
|Ωi| =

1

2

∑
TI

∑
i∈TI
〈φi,ϑ(TI)〉nTIi,1︸ ︷︷ ︸
I

+
1

2

∑
Te

∑
i∈Te
〈φi,ϑ(Te)〉nTei,1︸ ︷︷ ︸
II

+
∑
e∈Γ

〈
φi + φj

2
,ϑ(Te)

〉
ne,1︸ ︷︷ ︸

III

.

Using (9.36), we get

I =
∑
TI

〈
1

2

∑
i∈TI

φin
TI
i,1,ϑ(TI)

〉
= −

∑
TI

〈
∂hxφ

TI ,ϑ(TI)
〉
|TI |. (10.6)

Consider the contribution of a fixed boundary triangle Te (refer to Figure 9.1(b)) to the
summation II. Using (10.2) and the fact that nTei + nTej + ne = 0, we have

II
∣∣∣
Te

=
1

2

〈(
φin

Te
i,1 + φjn

Te
j,1 + φkne,1

)
,ϑ(Te)

〉
= −

〈(
φi + φj

2
ne,1 +

φj + φk
2

nTei,1 +
φk + φi

2
nTej,1

)
,ϑ(Te)

〉
= −

〈
∂hxφ

Te ,ϑ(Te)
〉
|Te|+

〈(
φbi + φbj

2
− φi + φj

2

)
,ϑ(Te)

〉
ne,1.
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Similarly, the contribution of Te to the summation III is given by

III
∣∣∣
Te

=

〈
φbi + φbj

2
,ϑ(Te)

〉
ne,1.

Thus, we get

II + III = −
∑
Te

〈
∂hxφ

Te ,ϑ(Te)
〉
|Te|+

∑
e∈Γ

〈
φbi + φbj

2
,ϑ(Te)

〉
ne,1. (10.7)

Adding (10.6) and (10.7) gives the result (10.5).

A formula similar (10.5) can be shown to hold for the approximation (10.4). This
leads to the following corollary.

Corollary 10.1.1. Let the vector φ ∈ Rm be defined at mesh vertices. Consider the
function ϑ = (ϑx,ϑy), where the component vectors ϑx,ϑy ∈ Rm are defined on triangles.
Then the following SBP property holds∑

i

〈
φi,
(
∂hxϑ

x
i + ∂hyϑ

y
i

)〉
|Ωi| = −

∑
T

〈
∇̃hφT , ϑ̃(T )

〉
|T |+

∑
e∈Γ

〈
φbi + φbj

2
,ϑ(Te) · ne

〉
,

(10.8)
where ∂hxϑi, ∂hyϑi are evaluated at the vertices using (10.3) and (10.4) respectively, while

ϑ̃(T ) =

(
ϑx(T )
ϑy(T )

)
∈ R2m, ∇̃hφT =

(
∂hxφ

T

∂hyφ
T

)
∈ R2m,

with the components of ∇̃hφT evaluated on triangles using (9.36) and (10.2) (compare
with the notation ∇̃ defined in Section 3.4). Note that Ωi is the dual cell centered at the
vertex i.

10.1.2 Finite volume scheme

The finite volume scheme is obtained by integrating the Navier-Stokes equation (3.20)
over the control volume Ωi, and approximating the flux integrals over the control volume
boundary.

|Ωi|
dUi

dt
= −

∑
j∈i

∫
∂Ωi∩∂Ωj

F(U,n)dS +
∑
T∈i

∫
∂ΩTi

G(V,∇V,n)dS

−
∫

∂Ωi∩Γ

F(U,n)dS +

∫
∂Ωi∩Γ

G(V,∇V,n)dS

≈ −
∑
j∈i

Fij +
∑
T∈i

GT ·
∫
∂ΩTi

ndS

−∑
e∈Γi

Fie +
∑
e∈Γi

Ge·
∫

∂Ωi∩e

ndS


= −

∑
j∈i

Fij +
∑
T∈i

GT · n
T
i

2
−
∑
e∈Γi

Fie +
∑
e∈Γi

Ge· ne
2
.
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10.2. Discrete entropy estimates

The semi-discrete finite volume scheme is taken to be of the form

|Ωi|
dUi

dt
= −

∑
j∈i

Fij +
∑
T∈i

GT · n
T
i

2
−
∑
e∈Γi

Fie +
∑
e∈Γi

Ge· ne
2
, (10.9)

where Ui is the cell averaged value in cell Ωi, Fij is a consistent and conservative inviscid
numerical flux across the interior faces of the dual volumes, and Fie is a consistent inviscid
flux across the boundary face ∂Ωi ∩ e. We take the following consistent approximation
GT = (GT

1 ,G
T
2 ) for the viscous fluxes in term of the entropy variables in each triangle T

GT
α = KT

α1∂
h
xV

T + KT
α2∂

h
yV

T , α = 1, 2, (10.10)

where matrices of K1,1,K1,2,K2,1,K2,2 are precisely the matrices described in Section
3.2.1, evaluated at some appropriate averaged state in triangle T (discussed in theroem
10.2.1). Furthermore, ∇hVT = (∂hxV

T , ∂hyV
T ) is the gradient approximation of the en-

tropy variables on the triangle T evaluated using (9.36) and (10.2). We define the viscous
flux across the boundary edge e as Ge = (Ge

1,G
e
2) such that

Ge·ne = GTe·ne + Ce, (10.11)

where Ce is a correction term to be defined later (see Theorem 10.2.2), needed to construct
consistent boundary viscous numerical fluxes. Note that if we ignore the correction term,
then the viscous flux approximation in (10.9) is essentially given by (10.3) and (10.4).

10.2 Discrete entropy estimates

We now present two results that describe the sufficient conditions on the scheme (10.9),
needed to obtain discrete global entropy estimates analogous to those described in Section
3.4. In Theorem 10.2.1, we discuss how the various numerical flux terms in (10.9) need to
be prescribed to obtain an entropy estimate consistent with (3.22). However, we do not
make any assumptions on type of boundary conditions imposed. This leaves the correction
term Ce introduced in (10.11) unspecified. In Theorem 10.2.2, we assume homogeneous
boundary conditions and specify how Ce must be specified, to obtain consistent boundary
fluxes and discrete entropy estimates consistent with (3.27) or (3.26).

Theorem 10.2.1. Consider the numerical scheme (10.9) for the Navier-Stokes system
(3.10), with the various flux terms chosen as follows:

1. The numerical inviscid flux Fij is chosen to satisfy the E-flux condition (9.21).

2. The boundary inviscid flux is approximated by

Fie =

 F ρ
ie

1
2
(pbine) + uiF

ρ
ie

FE
ie

 , F ρ
ie =

(
ρ
ubne
2

)
i

,

FE
ie =

[(
ρ
|u|2
2

+
γp

γ − 1

)
ubne
2

]
i

+
[
(pb − p)une

2

]
i
,

(10.12)

where un = u·n and the superscript ′b′ implies that the quantity in question is
evaluated from the prescribed boundary conditions (when available).
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3. The viscous flux on interior triangles is approximated by (10.10) and (9.36), with

KT = K
(
VT
)
, VT =

1

3

∑
i∈T

Vi. (10.13)

4. The boundary viscous flux on the boundary edge e (refer to Figure 9.1) is approxi-
mated by (10.11) and (10.2), with

KTe = K
(
VTe

)
, VTe =

(Vb
i + Vb

j)
>

2
. (10.14)

Then the scheme satisfies the following discrete entropy estimate for the Navier-Stokes
system

d
dt

∑
i

ηi|Ωi| 6−
∑
e∈Γ

[
−
(

ρs

γ − 1

ubne
2

)
i

−
(

ρs

γ − 1

ubne
2

)
j

]
∑
e∈Γ

[〈
(Vb

i + Vb
j)

2
,GTe·ne

〉
+

〈
(Vi + Vj)

2
,Ce

〉]
.

(10.15)

Note that (10.15) is consistent with (3.22) if Ce = 0. In fact, this will be true for all cases
except wall boundary conditions with a non-zero heat flux (see Theorem 10.2.2).

Proof. Taking the scalar product of (10.9) with Vi and summing over all vertices i results
in
d
dt

∑
i

ηi|Ωi| = −
∑
i

∑
j∈i
〈Vi,Fij〉 −

∑
i

∑
e∈Γi

〈Vi,Fie〉+
1

2

∑
i

∑
T∈i

〈
Vi,G

T ·nTi
〉

+
1

2

∑
i

∑
e∈Γi

〈Vi,G
e·ne〉

= −
∑
i

∑
j∈i
〈Vi,Fij〉︸ ︷︷ ︸
I

−
∑
e∈Γ

(〈Vi,Fie〉+ 〈Vj,Fje〉)︸ ︷︷ ︸
II

+
1

2

∑
T

∑
i∈T

〈
Vi,G

T ·nTi
〉

︸ ︷︷ ︸
III

+
∑
e∈Γ

〈
(Vi + Vj)

2
,GTe·ne

〉
︸ ︷︷ ︸

IV (a)

+
∑
e∈Γ

〈
(Vi + Vj)

2
,Ce

〉
︸ ︷︷ ︸

IV (b)

.

Since Fij satisfies (9.21), we obtain

I = −
∑
i

∑
j∈i

〈(
Vij −

1

2
∆Vij

)
,Fij

〉
6 −

∑
i

∑
j∈i

〈
Vij,Fij

〉
+

1

2

∑
i

∑
j∈i

(Ψ(Uj,nij)−Ψ(Ui,nij))

= −
∑
i

∑
j∈i

〈
Vij,Fij

〉
+

1

2

∑
i

∑
j∈i

(Ψ(Uj,nij) + Ψ(Ui,nij))−
∑
i

∑
j∈i

Ψ(Ui,nij).

(10.16)
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i

(a)

i

ne1

2

ne2

2

(b)

Figure 10.2: Dual cell for (a) an interior vertex; (b) boundary vertex with boundary edges
e1 and e2.

Noting that Vij = Vji and Fij = −Fji, the first term in (10.16) sums to zero. Similarly,
the second term in (10.16) drops out since Ψ(Ui,nij) = −Ψ(Ui,nji). Thus, let us focus on
the remaining third term in (10.16). If i is an interior vertex as shown in Figure 10.2(a),
then

∑
j∈i

Ψ(Ui,nij) = 0 as
∑
j∈i

nij = 0. However, if i is a boundary vertex as shown in

Figure 10.2(b), then

∑
j∈i

Ψ(Ui,nij) =
∑
α=1,2

(
(〈Vi, fα(Ui)〉 − qα(Ui))

∑
j∈i

nij,α

)

= −
∑
α=1,2

(
(〈Vi, fα(Ui)〉 − qα(Ui))

∑
e∈Γi

1

2
ne,α

)
= −

∑
e∈Γi

Ψ
(
Ui,

ne
2

)
.

Thus,
I 6

∑
e∈Γ

(
Ψ
(
Ui,

ne
2

)
+ Ψ

(
Uj,

ne
2

))
,

which in turn implies

I + II 6
∑
e∈Γ

[(
Ψ
(
Ui,

ne
2

)
− 〈Vi,Fie〉

)
+
(

Ψ
(
Uj,

ne
2

)
− 〈Vj,Fje〉

)]
. (10.17)

The Navier-Stokes equations with the entropy framework given by (3.8), has the entropy
potential function Ψ(U,n) = ρun. Choosing Fie as (10.12), we get

〈Vi,Fie〉 −Ψ
(
Ui,

ne
2

)
= −

(
ρs

γ − 1

ubne
2

)
i

. (10.18)
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For the viscous terms III and IV (a), we use Corollary 10.1.1 with φi ≡ Vi, ϑx(T ) ≡
GT

1 and ϑy(T ) ≡ GT
2 to get

III + IV (a) = −
∑
T

|T |
〈
∇̃hVTI ,KT ∇̃hVT

〉
+

〈
(Vb

i + Vb
j)

2
,GTe · ne

〉
. (10.19)

Finally, using (10.17), (10.18) and (10.19), we get

d
dt

∑
i

ηi|Ωi| 6−
∑
e∈Γ

[
−
(

ρs

γ − 1

ubne
2

)
i

−
(

ρs

γ − 1

ubne
2

)
j

]
−
∑
T

|T |
〈
KT ∇̃hVT , ∇̃hVT

〉
∑
e∈Γ

[〈
(Vb

i + Vb
j)

2
,GTe·ne

〉
+

〈
(Vi + Vj)

2
,Ce

〉]
.

Since KT > 0, we get (10.15).

Remark 10.2.1. 1. Ignoring the viscous fluxes and considering the scheme

|Ωi|
dUi

dt
= −

∑
j∈i

Fij +
∑
e∈Γi

Fie, (10.20)

with the inviscid fluxes approximated as above, we obtain the following entropy es-
timate for the Euler system

d
dt

∑
i

ηi|Ωi| 6−
∑
e∈Γ

[
−
(

ρs

γ − 1

ubne
2

)
i

−
(

ρs

γ − 1

ubne
2

)
j

]
, (10.21)

which is consistent with its analytical counterpart

d
dt

∫
Ω

ηdx 6 −
∫
∂Ω

q(U,n)dS. (10.22)

2. Assuming positivity of pressure and density at the vertices, the pressure and density
obtained on the triangles from the averaged entropy variables VT and VTe are also
positive. This is discussed in Appendix E.

3. Due to the presence of physical viscosity, the estimates (10.15) would also hold true
if Fij is chosen to satisfy (9.18) instead of (9.21).

Note that we have discretized the symmetric formulation of the viscous fluxes in terms
of the entropy variables, using (9.36), (10.2), (10.3) and (10.4). This allowed us to obtain
consistent entropy estimates for the Navier-Stokes equations. Alternately, we can write
the viscous fluxes directly in terms of the stress tensor τ , and use the same discrete
operators to approximate the derivatives of the velocity vector. This has approach has
been used in [17] to construct a semi-discrete scheme for the Navier-Stokes equation,
which is kinetic energy preserving.

Next, we consider homogeneous boundary conditions and specify how Ce must be
chosen to obtain consistent discrete entropy stability estimates. Note that the correction
term only appears in the boundary viscous terms.
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Theorem 10.2.2. Consider the numerical scheme (10.9) for Navier-Stokes equation,
satisfying the conditions described in Theorem 10.2.1. Let the correction term be chosen
as

Ce =

−
(

0 0 0
(
hb + κ

R(V Te,(4))2

(
∇hVTe,(4)·ne

)))>
, if Q·n

∣∣∣
∂Ω

= hb given

0, otherwise
,

(10.23)
for Navier-Stokes with no-slip boundary conditions. Then, for an adiabatic wall (hb = 0),
we obtain the consistent entropy stability estimate

d
dt

∑
i

ηi|Ωi| 6 0 (10.24)

and boundary flux expressions Fie = (0, pine/2, 0)>, Ge·ne =
(
0, τ h·ne, 0

)>, which

are consistent with (3.24). On the other hand, for an isothermal wall with θ
∣∣∣
Ω

= θb, we
obtain the estimate

d
dt

∑
i

ηi|Ωi| 6
∑
e∈Γ

[
κ

RV e,(4)

(
∇hVTe,(4)·ne

)]
, V e,(4) = − 1

R

(
θbi + θbj
θbiθ

b
j

)
,

which is consistent with (3.26). Note that V (4) denotes the last component of the vector
of entropy variables, since we are in two-dimensions.

Proof. If we consider no-slip boundary conditions for the Navier-Stokes system, then for
each boundary edge e we have ub = 0 and according to (10.14)

VTe =

V Te,(1)

0
V Te,(4)

 , GTe ·ne =

 0
τh·ne

κ
R(V Te,(4))2

(
∇hVTe,(4)·ne

)
 ,

〈
(Vb

i + Vb
j)

2
,GTe·ne

〉
=

κ

RV Te,(4)

(
∇hVTe,(4)·ne

)
,

τh =
1

V Te,(4)

(
−4

3
µ∂hxV

Te,(2) + 2
3
µ∂hyV

Te,(3) −µ∂hxVTe,(3) − µ∂hyVTe,(2)

−µ∂hxVTe,(3) − µ∂hyVTe,(2) 2
3
µ∂hxV

Te,(2) − 4
3
µ∂hyV

Te,(3)

)
.

Thus, (10.15) reduces to

d
dt

∑
i

ηi|Ωi| 6
∑
e∈Γ

[
κ

RV Te,(4)

(
∇hVTe,(4)·ne

)
+

〈
(Vi + Vj)

2
,Ce

〉]
.

Additionally, assume the heat flux at the boundary is prescribed as hb, and note that for
this particular type of boundary condition

V Te,(4) =
(V

b,(4)
i + V

b,(4)
j )

2
=

(V
(4)
i + V

(4)
j )

2
,
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since the temperature, density and pressure are not prescribed at the boundary. Choosing
Ce according to (10.23) leads to the viscous boundary flux Ge·ne =

(
0, τ h·ne, −hb

)>
and the discrete entropy estimate

d
dt

∑
i

ηi|Ωi| 6
∑
e∈Γ

[
V Te,(4)

2R
hb
]
.

Setting hb = 0 gives us the entropy stability estimate (10.24), and the corresponding
boundary flux expressions for adiabatic no-slip wall conditions.

On the other hand, if we have isothermal no-slip wall conditions, Ce = 0 according to
(10.23). In this case, (10.15) reduces to

d
dt

∑
i

ηi|Ωi| 6
∑
e∈Γ

[ κ

RV Te,(4)

(
∇hVTe,(4)·ne

)]
, V Te,(4) =

(V
b,(4)
i + V

b,(4)
j )

2
= V e,(4).

10.3 Code implementation

We briefly describe the important aspects of the implementation of the numerical solver.
The code has been termed as TEnSUM, which stands for Two-dimensional Entropy
stable Solver on Unstructured Meshes. The code has been implemented in C++, and
parallelized using MPI standards.

10.3.1 Mesh generation and partitioning

The unstructured meshes are generated using Gmsh [41], which is an open-source finite
element grid generator with a built-in CAD engine, and equipped with several important
post-processing tools. An important tool implemented inside Gmsh is METIS [63], which
is a package used for graph partitioning. We use the information provided by METIS to
partition the mesh based on the cell-graph. As an example, consider the un-partitioned
mesh around a NACA-0012 airfoil, as shown in Figure 10.3(a). Using METIS, the mesh is
partitioned into 10 sub-meshes, as shown in Figure 10.3(b), with each partition depicted
by a different colour. The partitioning algorithm must ensure i) each sub-mesh has ap-
proximately the same number of cells, which is also termed as load balancing, and ii) the
amount of communication between processors is minimum, which depends on the length
of the boundary between sub-meshes and the number of neighbouring sub-meshes. Both
these objectives are achieved by using a multilevel k-way partitioning algorithm [64].

10.3.2 Parallelization

Once the mesh is partitioned, say into N partitions, MPI is used to initialize N processors.
Each processor solves the problem by running TEnSUM on one of theN sub-meshes. Each
primary triangle of the original mesh is owned by only one processor. However, vertices
on the inter-partition boundaries are shared by two or more processors. At each (sub)
time-step of the Runge-Kutta algorithm, data at the shared vertices may need to be
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(a) Un-partitioned mesh (b) Partitioned mesh

Figure 10.3: Partitioning the mesh around a NACA-0012 airfoil into 10 sub-meshes using
METIS.

communicated between neighbouring processors. As an example, consider the situation
shown in Figure 10.4, where the triangles T1, T5 in light-grey belong to partition 1, while
the triangles T2, T3, T4 in dark-grey belong to partition 2. Furthermore, the vertex j1

belongs to partition 1, the vertices j3, j4 belong to partition 2 and the vertices i, j2, j5
are shared by the two partitions. We need to evaluate the right hand side of the scheme
(10.9) at the vertex i. Keeping with the terminology introduced is Chapter 8, we denote
the right hand side as the residual function R. Since the inter-partition boundary never
intersects with the domain boundary, there are no boundary terms to be evaluated in Ri.

i j1

j2

j3

j4

j5

T1

T2

T3

T4

T5

Figure 10.4: Partitioning about vertex i. The triangles in light-grey belong to partition 1
while the ones in dark-grey belong to partition 2.

In partition 1, the residual function is evaluated as

Ri = −wij1Fij1 − wij2Fij2 − wij5Fij5 +
1

2

(
GT

1 · nT1
i + GT

5 · nT5
i

)
, (10.25)
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while in partition 2,

Ri = −wij2Fij2 − wij3Fij3 − wij4Fij4 − wij5Fij5 +
1

2

(
GT

2 · nT2
i + GT

3 · nT3
i + GT

4 · nT4
i

)
.

(10.26)
We have multiplied the inviscid fluxes with weights wij, to accommodate for the fact
that the inviscid fluxes on inter-partition edges are evaluated in both partitions. Thus,
wij = 0.5 if both vertices i, j are shared between the two partitions, otherwise wij = 1.
Once (10.25) and (10.26) have been evaluated in the respective partitions, the values are
communicated between the processors handling partitions 1 and 2 using asynchronous
MPI send and receive commands, following which they are added to the existing values
on each partition. Note that vertex gradients of (entropy) variables are also required if a
higher-order inviscid flux is used (see Chapter 9). In this case, the vertex gradients are
evaluated locally on each partition using (9.37) and then the gradients at shared vertices
are also communicated between processors.

10.4 Numerical results

We now present numerical results with the scheme discussed above, on several standard
test cases. The inviscid flux is chosen to be one of the fluxes described in the beginning of
Section 9.4. The semi-discrete scheme is integrated in time using the explicit SSP-RK3,
and the local time step depends on the convective and viscous contributions [12]:

∆ti =
CFL · |Ωi|

λi
, λi =

∑
j∈i

[
|ui·nij|+ ai|nij|+

µ|nij|
|xj − xi|ρi

]
.

In all test cases we consider the ideal gas equation of state with γ = 1.4. The Prandtl
number and the ideal gas constant are chosen as Pr = 1.0, R = 1 respectively, except
when indicated otherwise.

10.4.1 Shock tube problem

This test case corresponds to the shock tube problem of the Sod type discussed in
Section 8.4.2 for the Navier-Stokes equations. The aim of this test case is to study
the balancing effects of physical viscosity, the heat flux and artificial numerical viscos-
ity, from the point of view of obtaining non-oscillatory solution profiles. The initial
left state is given by (ρ, u1, u2, p)L = (1.0, 0.0, 0.0, 1.0) and the right state is given by
(ρ, u1, u2, p)R = (0.125, 0.0, 0.0, 0.1), with the initial discontinuity placed at x = 0.5. The
domain is taken to be [0, 1]× [0, 0.4]. The primary and the Voronoi dual meshes used for
the simulations are similar to the ones shown in Figure 9.10. We discretize the domain
with 100 vertices in the direction of the flow and 80 vertices along the flow cross-section.
This will be the coarse mesh, which corresponds to a mesh size of h = 10−2. We also
consider a finer mesh obtained by taking 10 times the original number of vertices in each
direction, leading to a mesh size of h = 10−3. Inflow farfield conditions are imposed on
the left wall and outflow conditions on the right. The top and bottom walls have periodic
boundary conditions. The final time is set as tf = 0.2 with CFL = 0.5. All simulations
are performed with the KEPES-TeCNO flux.
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We consider two different viscous regimes determined by the value of µ. In each regime,
we switch off the heat flux, physical viscosity or artificial numerical viscosity by setting
µ = 0, κ = 0 or Dij = 0 respectively. Note that if the heat flux is active in the absence
of physical viscosity, κ is first evaluated from the given non-zero value of µ using (3.12),
following which µ is set to zero. We use the notations “ND”, “VISC” and “HEAT” to
indicate whether the numerical viscosity, physical viscosity and heat flux are respectively
active during a particular simulation. The solution with ND+VISC+HEAT will be used
as a reference solution, as it gives oscillation-free solutions in all the scenarios considered
below.

Regime 1 (µ = 2.0× 10−4)

The solutions on the coarse mesh for all configurations with ND active, are almost in-
distinguishable with non-oscillatory solution profiles, as can be seen in Figure 10.5(a).
However, the solutions evaluated with ND switched off are highly oscillatory, as shown in
Figures 10.5(b)-(c), indicating that the physical viscosity and heat flux are not enough to
stabilize the oscillations in low viscosity regimes. This is not surprising as the mesh Peclet
number for the given set-up is quite large, as shown in Figure 10.5(d). The oscillations
dampen down on the finer mesh with h = 10−3, as shown in Figure 10.6. In fact, the
solution with VISC + HEAT is non-oscillatory and indistinguishable with the solution
obtained if ND is active as well. Note that the solutions seem to converge to a different
profile in the absence of the heat flux.

Regime 2 (µ = 2.0× 10−3)

In this regime, the viscosity is increased by a factor of 10. We observe from Figure
10.7 that the solutions are once again oscillatory in the absence of numerical diffusion.
However, the profile is non-oscillatory with only physical viscosity and heat flux active.
This is expected, as the mesh Peclet number is within a reasonable range to preform DNS
of the Navier-Stokes equation. Moreover, the oscillations with purely physical viscosity or
heat flux active, are much milder, as compared to those observed in the previous regime.
The solutions on a finer mesh (see Figure 10.8) have the same characteristics as those
observed in the previous regime.

Based on the above results, we make the following remarks:

1. When Pe is much larger than unity, as in the case in Figure 10.5(b), the solution is
highly oscillatory in the absence of ND.

2. When Pe below 2.0, the scheme with only VISC+HEAT active seems to give almost
non-oscillatory solutions. The term almost is used due to the existence of very
minor oscillations, as is shown in Figure 10.9. Also note that the initial condition is
discontinuous, which furthers the need of introducing artificial numerical dissipation
to eliminate oscillations due to Gibbs phenomenon. Thus, we prefer to use the with
scheme ND+VISC+HEAT for problems with discontinuous initial data or having
coarse meshes.

3. Physical viscosity seems to play an important role in suppressing oscillations in
the region corresponding to a shock for the inviscid (Euler) solution. Similarly,
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Figure 10.5: Shock tube for µ = 2.0 × 10−4 on a mesh with h = 10−2, solved with KEPES-
TeCNO.
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Figure 10.6: Shock tube for µ = 2.0 × 10−4 on a mesh with h = 10−3, solved with KEPES-
TeCNO.
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Figure 10.7: Shock tube for µ = 2.0 × 10−4 on a mesh with h = 10−2, solved with KEPES-
TeCNO.
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Figure 10.8: Shock tube for µ = 2.0 × 10−4 on a mesh with h = 10−3, solved with KEPES-
TeCNO.
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the heat flux seems to be key in obtaining non-oscillatory solutions in the region
corresponding to a contact discontinuity for the inviscid solution.

4. It is evident from Figure 10.8 that, in the absence of heat flux or in the absence of
physical viscosity, the solutions converge to very different profiles, as compared to
the case when both physical viscosity and heat flux are active.
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Figure 10.9: Zoomed density profile for the shock tube, with mesh size h = 10−3, solved
with KEPES-TeCNO.

10.4.2 Vortex advection

This test involves the advection of a smooth vortex in a viscous flow. The initial conditions
of the flow are the same as those prescribed in Section 5.8.4 for the isentropic vortex. We
choose M = 2

√
2, α = 45◦ and a constant coefficient of viscosity µ = 10−5. The vortex is

advected till time t = 50 with a CFL=0.4, during which the vortex completes 10 cycles
along the domain diagonal. We assume periodic boundary conditions.

The initial and and final density profiles with the KEPES-TeCNO scheme are shown
in Figure 10.10. The profile at tf = 50 seems a little diffused as compared to the initial
profile, which can be attributed to physical viscosity. For an entropy stable scheme, the
total (mathematical) entropy should decrease with time, in accordance with the results
proved in Section 10.2. This behaviour is clearly observed in Figure 10.11 with the
KEPES-TeCNO scheme.

10.4.3 Laminar flat-plate boundary layer

This problem corresponds to a viscous flow over a flat plate, which leads to the develop-
ment of a boundary layer near the plate surface. The computational domain is taken as
[0, 1.5]× [0, 0.25], with the primary and median dual grids shown in Figure 10.12. There is
an initial inlet portion of the domain of length 0.5 units on which slip boundary condition
is imposed, followed by the no-slip boundary corresponding to the flat plate of length
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(a) (b)

Figure 10.10: Density profile for the advecting vortex solved with KEPES-TeCNO (a) t=0,
(b) t=50.
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Figure 10.11: Evolution of total entropy for advecting vortex solved with KEPES-TeCNO.
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1 unit. Adiabatic conditions are used on the flat plate boundary, with the Reynolds
number corresponding to the plate length being 105. At the top and outlet, the free-
stream pressure is specified, while at the inlet the free-stream values are used together
with the numerical flux function to compute the flux. The free-stream values used for the
simulations are

p∞ = 8610, θ∞ = 300,u∞ = (34.7189, 0)>,

with Pr = 0.72 and R = 287. The flow is initialized using the free-stream values, which
has a Mach number of 0.1.

Figure 10.13 shows the comparison of the numerically approximated velocities with
the Blasius semi-analytical solution in the standard non-dimensional units. These results
are taken on the vertical line through the point on the plate, at a distance x = 0.8 from
the plate tip. The solutions obtained using the KEPES-TeCNO scheme and Roe-MUSCL
scheme are almost identical. The vertical velocity component is much weaker than the
stream-wise component, and thus probably more sensitive to numerical dissipation and
compressibility effects. The KEPES-TeCNO scheme is able to capture this profile quite
accurately, indistinguishable from the standard Roe solver.

Inlet portion Flat plate

(a)

(b)

Figure 10.12: Computational domain for flat-plat problem: (a) Primal mesh, (b) Median
dual mesh.

10.4.4 Lid-driven cavity

This is a standard problem used for validation of numerical methods for incompressible
flows [66, 14, 42]. The problem describes a fluid at Reynolds number 103, in a unit square
domain with no-slip conditions on three sides, while the top boundary of the domain
moves with a velocity u = (1, 0)>. All walls are isothermal and the flow is initialized with

p0 = θ0 = 71.429,u0 = (1, 0)>,

with Pr = 0.7 and θ0 corresponding to the wall temperature. The laminar solution of
the problem is steady, with a Mach number of 0.1 corresponding to the moving lid. The
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Figure 10.13: Laminar flat plate boundary layer: (a) Stream-wise velocity, (b) Vertical
velocity. Rex is the Reynolds number corresponding to the plate length at x = 0.8, while
ψ = y

√
(0.5Rex)/x is the non-dimensionalised vertical distance from the plate at x = 0.8.

numerical data of Ghia et al. [42] is used as a reference solution. We plot the horizontal
velocity profile along the vertical line through the midpoint of the domain, and vertical
velocity profile along the horizontal line through the midpoint of the domain, as shown
in Figure 10.14. The KEPES-TeCNO scheme leads to solutions that match the reference
profiles quite accurately, and are also comparable to the solution from the Roe-MUSCL
solver.
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Figure 10.14: Lid driven cavity: (a) Streamwise velocity, (b) Vertical velocity

10.4.5 Transonic flow past NACA-0012 airfoil

This test case involves a steady flow past a symmetric NACA-0012 airfoil. A zoomed
view of the primary and (Voronoi) dual meshes of the computational domain are shown
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in Figure 10.15, which will correspond to base mesh L0. The primary mesh has 4948
vertices, with 60 vertices lying on each of the top and bottom airfoil surfaces. The mesh
is refined by splitting each primary triangle into four similar triangles to obtain the mesh
Ln, where n refers to the number of mesh refinements. Adiabatic no-slip wall conditions
are imposed on the surface of the air-foil. The dual mesh cells are flat and clustered near
the surface of the airfoil, to capture the boundary layer and reduce cross-diffusion.

(a) (b)

Figure 10.15: Mesh L0 for NACA airfoil: (a) Primal mesh, (b) Voronoi dual mesh.

We also consider the following quantities for comparison:

• Surface pressure coefficient Cp along the airfoil surface

Cp =
p− p∞

1
2
ρ∞|u∞|2l∞

.

• Surface skin friction coefficient Cf along the airfoil surface

Cf =
(τn)·n⊥

1
2
ρ∞|u∞|2l∞

.

• Pressure induced lift and drag force coefficients:

cdp =

∫
S

p(n·Ψd)ds

1
2
ρ∞|u∞|2l∞

, clp =

∫
S

p(n·Ψl)ds

1
2
ρ∞|u∞|2l∞

.

• Lift and drag force coefficients due to viscous forces:

cdf =

∫
S

(τn)·Ψdds

1
2
ρ∞|u∞|2l∞

, clf =

∫
S

(τn)·Ψlds

1
2
ρ∞|u∞|2l∞

.

In the above expressions, ρ∞ is the free-stream density, u∞ is the free-stream velocity
magnitude and l∞ corresponds to the characteristic length scale which is chosen to be
the span of the airfoil i.e., l∞ = 1. Furthermore, n is the outward normal at domain
boundary, n⊥ is the the tangent at the domain boundary, Ψd = (cosα, sinα)>,Ψl =
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(a) (b)

(c) (d)

Figure 10.16: Mach number plots for flow past a NACA0012 airfoil, at Re=500, M=0.8
and a.o.a 10◦ with KEPES-TeCNO scheme (a) L0, (b) L1, (c) L2, (d) L3
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(− sinα, cosα)>, with α being the angle of attack (a.o.a.). For our simulations, we choose
ρ∞ = 1, p∞ = 2.85 and Pr = 0.72. We consider two flow configurations, and the value
of u∞ depends on the configuration under consideration. The flow is initialized using the
free-stream values.

The first one corresponds to a flow with Reynolds number 500, free-stream Mach
number of 0.8 and 10 degree angle of attack. The free-stream velocity is set at
u∞ = (1.574, 0.277)>. The Mach number profiles with the high-resolution KEPES-
TeCNO scheme on meshes L0−L3 are shown in Figure 10.16. Apart from small changes
in the maximum and minimum values of the Mach number, no significant qualitative
differences can be observed with mesh refinement.

A mesh refinement study (see Figure 10.17) indicates the convergence of Cp and Cf
to the reference data obtained from [114]. The Cp plots for meshes L2 and L3 are almost
indistinguishable, while there is a significant improvement in the peak values of Cf on
going from mesh L2 to L3. This re-affirms the well known fact that the accurate evaluation
of Cf is a much harder task as compared to the evaluation of Cp. The lift and drag
coefficients computed on the finest mesh (see Table 10.1), are comparable to the reference
values taken from [114].

Mesh cdp cdf clp clf clp + clf
L0 1.637e-01 1.247e-01 4.946e-01 -4.468e-03 4.901e-01
L1 1.538e-01 1.237e-01 4.636e-01 -3.443e-03 4.601e-01
L2 1.495e-01 1.235e-01 4.520e-01 -3.669e-03 4.483e-01
L3 1.476e-01 1.235e-01 4.470e-01 -3.945e-03 4.430e-01
Reference: 1.475e-01 1.275e-01 - - 4.363e-01

Table 10.1: NACA-0012 at Re=500, M=0.8 and a.o.a 10◦, lift and drag coefficients, with
KEPES-TeCNO scheme. Reference values taken from [114].

The second flow configuration considered corresponds to a laminar flow at a Reynolds
number of 5000, Mach number of 0.5 and zero degree angle of attack. The free-stream
velocity is set at u∞ = (0.9987, 0)>. Once again, the Mach number profiles shown in
Figure 10.18 are qualitatively very similar to each other on the various mesh levels. Mesh
refinement leads to a substantial improvement in the Cp and Cf plots as shown in Figure
10.19. The lift and drag coefficients on various mesh levels are given in Table 10.2. Since
the a.o.a is zero degrees, the lift coefficients should be almost zero. Furthermore, the lift
coefficients shown in 10.2, converge to the reference values taken from [129].

Mesh cdp cdf clp clf
L0 3.134e-02 3.089e-02 -4.913e-06 6.341e-06
L1 2.513e-02 3.121e-02 8.074e-05 5.891e-06
L2 2.308e-02 3.188e-02 -8.021e-06 2.539e-06
L3 2.254e-02 3.221e-02 4.775e-05 1.476e-06
Reference: 2.249e-02 3.291e-02 - -

Table 10.2: NACA-0012 at Re=5000, M=0.5 and a.o.a 0◦, lift and drag coefficients, with
the KEPES-TeCNO scheme. Reference values taken from [129].
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Figure 10.17: Transonic flow past a NACA0012 airfoil, at Re=500, M=0.8 and a.o.a 10◦,
with KEPES-TeCNO scheme.
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(a) (b)

(c) (d)

Figure 10.18: Mach number plots for flow past a NACA0012 airfoil, at Re=5000, M=0.5
and a.o.a 0◦ , with KEPES-TeCNO scheme (a) L0, (b) L1, (c) L2, (d) L3
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Figure 10.19: Transonic flow past a NACA0012 airfoil, at Re=5000, M=0.5 and a.o.a 0◦,
with KEPES-TeCNO scheme.
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10.4.6 Flow past a cylinder

This test case involves a laminar unsteady flow past a cylinder inside a channel [102]. The
geometry of the domain is shown in Figure 10.20. The cylinder is offset somewhat from
the center of the channel to destabilize the otherwise steady symmetric flow. On the left,
the inflow boundary condition is imposed with p = θ = 160.7143, u1 = 4umy(H − y)/H2

and u2 = 0, where um = 1.5 is the maximum velocity and the Mach number corresponding
to um is 0.1. Isothermal no-slip boundary conditions are imposed on the cylinder surface,
and the top and bottom boundaries. The Reynolds number of the flow corresponding to
the cylinder is 100.

H = 0.41m
0.15m

0.16m

0.1m

0.15m

1.4m

Figure 10.20: Geometry of domain for flow past a cylinder.

After some time, a Von Karman vortex street appears with a periodic shedding of
eddies from alternate sides of the cylinder. This is typical for slow flows past a slender
body. Simulations are performed with CFL=0.6 using the KEPEC scheme, which is the
KEPES-TeCNO scheme without any artificial dissipation. Note that this would still lead
to entropy stability as discussed in remark 10.2.1. Since we are performing a DNS for the
test problem, we choose a fine mesh. The total number of grid points for the simulation
is 427640, which ensures that the mesh Peclet number is close to unity throughout the
mesh. The vorticity profile is shown in Figure 10.21, which clearly depicts the periodic
vortex shedding. The periodic behavior can also be observed in Figure 10.22, where the
evolution of the coefficient of total lift cl = clp + clf and the coefficient of total drag
cd = cdp + cdf on the surface of cylinder are shown. Another quantity of interest from the
point of view of the oscillations, is the Strouhal number given by St = FD/ū, where F is
the frequency of oscillation for the lift, D = 0.1 is the diameter of the cylinder and ū = 1
is the mean inflow velocity. The time period of oscillation as observed from the evolution
of cl is τ = 0.333. The peak cl, cd values and the Strouhal number for this simulation are
presented in Table 10.3, which are close to the range of results given in [102].

max cl max cd St
Simulation values 0.96068 3.2189 0.3003
Reference range [0.99,1.01] [3.22,3.24] [0.284,0.300]

Table 10.3: Comparison of quantities of interest for flow past a cylinder.

The boundary conditions are imposed weakly in the numerical scheme. However, the
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scheme is able to ensure the numerical solution are consistent with the conditions near
the boundaries. In Figure 10.23, we can clearly see the velocity field near the top-left and
top-right cylinder boundary matches the no-slip boundary conditions quite well.

Figure 10.21: Von Karman vortex street for flow past a cylinder with KEPEC scheme;
vorticity plot.
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Figure 10.22: Evolution of cl and cd on the surface of the cylinder, with the KEPEC scheme.
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(a) Top-left surface (b) Top-right surface

Figure 10.23: Velocity field near cylinder surface.
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11. Conclusions

We have investigated the performance of high-order entropy conservative finite difference
schemes for the Euler equations on Cartesian grids. Comparing three central fluxes,
namely, KEP, ROE-EC and KEPEC, we observe that the results with KEPEC are the
most accurate for the DNS of the Euler equations with smooth solutions. Thus, we
conjecture that a numerical flux that is both entropy conservative and kinetic energy
preserving, is more accurate for long-time simulations of smooth solutions, as compared
to a flux that has only one of these two properties.

Entropy stable schemes, i.e., schemes satisfying a discrete form of the entropy inequal-
ity, are constructed by combining high-order entropy conservative fluxes and entropy vari-
able based numerical dissipation terms. The high-order dissipation terms are obtained
by reconstructing the scaled entropy variables such that a sign property is satisfied at
each cell-interface. Only a handful of reconstruction techniques are known to satisfy this
property. We proposed a new WENO-type reconstruction, called SP-WENO, which satis-
fies the sign-property and possesses additional symmetry and stability properties. Unlike
ENO interpolation techniques (which are also sign-preserving), SP-WENO does not show
a deterioration in the order of accuracy when used in the TeCNO framework. While
SP-WENO is shown to perform well for scalar conservation laws, it leads to undesirably
large oscillations close to discontinuities when tested with the Euler equations. The os-
cillations can be attributed to the absence of numerical dissipation in the proximity of a
shock or contact discontinuity. A modification to the reconstruction is suggested to ensure
the dissipation does not vanish in key areas, while maintaining high-order of accuracy in
smooth regions. The new method termed as SP-WENOc preserves most of the crucial
properties of the original SP-WENO method, and gives better control of overshoots near
discontinuities.

For the one-dimensional Navier-Stokes equations, it is possible to discretize the vis-
cous flux to ensure that the semi-discrete scheme is kinetic energy preserving and entropy
stable [16], when used in conjunction with the KEPEC flux. This discretization cannot
be extended to higher dimensions due to the existence of cross derivative terms in the
viscous flux. We proposed a multi-dimensional SBP-type discretization for the viscous
terms, which leads to a kinetic energy preserving scheme if the viscous fluxes are written in
terms of the stress tensor, while an entropy stable scheme can be obtained if the symmet-
ric formulation of the viscous fluxes (in terms of the entropy variables) is used. However,
it does not seem to be possible to discretize the viscous fluxes to satisfy both proper-
ties simultaneously for the higher-dimensional problem. DNS of the three-dimensional
Taylor-Green vortex was performed with both types of discretizations, to test its ability
to simulate turbulent flows when the mesh is under-resolved. Both methods were able
to simulate the problem in a stable manner, while predicting the evolution of integral
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quantities such as the total kinetic energy and potential enstrophy quite accurately. On
the other hand, the simulation blows up when a simple central average flux is used to
approximate the inviscid flux.

We considered the vector-invariant formulation of the shallow water equations, which is
a commonly used model in the meteorological community. The model is coupled with the
scalar conservation law for absolute vorticity since i) obtaining vorticity indirectly from
the velocity vector may not give a good approximation, ii) an accurate approximation of
vorticity is needed, as several preserved invariants such as the total potential enstrophy are
evaluated in terms of vorticity. We also included rotational effects due to Coriolis terms
and allowed a non-flat bottom topography. A fourth-order energy preserving scheme is
proposed, which is also capable of preserving the potential enstrophy reasonably well for
smooth solutions.

While integrating a semi-discrete entropy conservative finite difference scheme in time,
the temporal discretization can destroy the conservation property. However, a Crank-
Nicolson type scheme for time-integration can ensure that entropy is conserved. On
the other hand, Subbareddy and Candler [112] have proposed an implicit fully discrete
scheme which is kinetic energy preserving, but cannot be shown to conserve entropy. We
proposed a fully-discrete second-order accurate finite difference scheme, which is both
entropy conservative and kinetic energy preserving when used in conjunction with the
KEPEC flux. The scheme was used to perform DNS of the one-dimensional shock tube
problem with the Navier-Stokes equations, and gave oscillation-free solutions when the
mesh Peclet number was small enough to resolve all the necessary scales.

Many industrial problems involve complex domains, which are more easily discretized
by unstructured grids. Thus, we designed a high-resolution vertex-centered finite volume
scheme for conservation laws, which is provably entropy stable. The underlying computa-
tional domain was discretized using triangles and a dual cell is constructed around each
vertex on which the conservation law is satisfied. The proposed scheme was constructed
by combining entropy conservative fluxes, and numerical dissipation operators based on
piecewise linear reconstruction of scaled entropy variables using the minmod limiter (which
satisfies the sign property). In particular, the scheme with the KEPEC flux was used, and
was termed as the KEPES-TeCNO scheme. To the best of our knowledge, the proposed
KEPES-TeCNO scheme for the Euler equations is one of the first high-resolution finite
volume scheme that is provably entropy stable on unstructured grids. The scheme is
robust in approximating complex flow features such as strong (supersonic) shocks, shock
reflections, slip lines and near incompressible flows. The robustness of the scheme is
demonstrated through a large number of benchmark numerical experiments, that illus-
trate that the KEPES-TeCNO is at least as accurate as a standard high-resolution Roe-
MUSCL method. The numerical tests show that the scheme is able to preserve positivity
of density and pressure without any additional treatment on unstructured grids.

The KEPES-TeCNO scheme has been extended for the initial-boundary-value prob-
lem of the compressible Navier-Stokes equations. The viscous fluxes are evaluated on
triangles in terms of the entropy variables, to preserve the symmetric structure of the
continuous system. The boundary conditions are weakly imposed by constructing suit-
able inviscid boundary fluxes, based on the numerical value at the boundary node and
the given boundary data. Additionally, the gradient of entropy variables evaluated in
boundary cells are corrected using the boundary data, which in turn ensures the proper
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evaluation of viscous fluxes. The above ingredients together lead to the derivation of
discrete non-linear entropy estimates for the Navier-Stokes equations with homogeneous
boundary conditions.

11.1 Future scope

There are several extensions and possibly some unanswered questions associated with the
work presented in this thesis. We list out a few of these crucial points below:

• The conjecture made about the accuracy of the KEPEC scheme for long-time sim-
ulations, is based on the results of the advecting isentropic vortex for the Euler
equations. While these results seem promising, the claim needs to be substantiated
with further experimentation, and possibly a theoretical proof.

• The SP-WENO gives oscillatory solutions for the Euler equations, which can be
attributed to the vanishing of the reconstructed jump in key areas. Although the
proposed correction of SP-WENO is able to control the overshoots near the dis-
continuities for the test cases considered in this thesis, one cannot guarantee that
the new SP-WENOc will give oscillation-free solutions for other test problems. The
fact that we were able to successfully modify SP-WENO while preserving most of its
crucial properties, indicates that it is possible to find other types of modifications,
thus giving more room to explore and experiment. It would also be fruitful to find
a version of SP-WENO that has smoother weights, as is the case with the original
WENO scheme [62].

• While we can construct arbitrarily high-order entropy conservative/stable finite dif-
ference schemes for the Euler equations, the SBP-type discretizations of the viscous
fluxes considered in this thesis are only second-order accurate. Performing a DNS
of the Navier-Stokes equations in tandem with a high-order entropy conservative
flux would certainly give smaller errors, but the overall scheme would still only be
second-order accurate. High-order viscous discretizations satisfying kinetic energy
preservation and/or entropy stability need to be investigated.

• The energy preserving VI-EP4 scheme for the shallow water equation has been de-
signed to preserve total energy, while the total mass and total absolute vorticity
are preserved due to the conservative flux discretization. However, numerical re-
sults indicate that VI-EP4 is also capable of preserving the total enstrophy quite
accurately, even though the scheme has not been designed to ensure this. Thus,
the VI-EP4 scheme is well suited for DNS simulations of the viscous shallow water
equations. Furthermore, it is worth looking at the possible extension of the VI-EP4
scheme to more generalized grids. This will be investigated in future work.

• A big drawback with entropy stable finite volume schemes for conservation laws
on unstructured grids, is that the entropy conservative fluxes are in general only
first-order accurate. Unlike finite difference schemes on Cartesian grids, there is
no interpolation formula available to get high-order accurate entropy conservative
finite volume fluxes. Thus, it would be fruitful to investigate methods to construct
a genuinely second-order accurate flux which is entropy conservative.
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• Boundary fluxes have been constructed for the initial boundary value problem for the
Navier-Stokes equations, which lead to entropy stability estimates for homogeneous
boundary conditions. It might be possible to construct boundary fluxes for a more
general boundary condition while satisfying suitable entropy estimates.

• Although the analysis for the finite volume schemes have been presented in two-
dimensions on triangular grids, it can easily be extended to the three-dimensional
Navier-Stokes equations on tetrahedral grids.
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A. Viscous flux symmetrization

Consider the entropy variables V given in (3.9). The first order spatial derivatives can be
evaluated in terms in the entropy variables as

∂xju1 = −∂xj(V
(2))

V (5)
+
V (2)∂xj(V

(5))

(V (5))2
, ∂xju2 = −∂xj(V

(3))

V (5)
+
V (3)∂xj(V

(5))

(V (5))2
,

∂xju3 = −∂xj(V
(4))

V (5)
+
V (4)∂xj(V

(5))

(V (5))2
, ∂xjT =

∂xj(V
(5))

R(V (5))2
,

for j = 1, 2, 3. We define the following notations

χ =
4

3
µ, ξ = −2

3
µ, e1 =

V (2)

V (5)
, e2 =

V (3)

V (5)
, e3 =

V (4)

V (5)
, e4 =

1

V (5)
.

Based on a slightly rescaled version of the expressions reported in [57], the viscous flux
components can be written as

gi =
3∑
j=1

Kij∂xjV, i = 1, 2, 3.

where

K11 = K>11 = e4


0 0 0 0 0
0 −χ 0 0 χe1

0 0 −µ 0 µe2

0 0 0 −µ µe3

0 χe1 µe2 µe3 −χe2
1 − µ(e2

2 + e2
3) + κ

R
e4

 ,

K22 = K>22 = e4


0 0 0 0 0
0 −µ 0 0 µe1

0 0 −χ 0 χe2

0 0 0 −µ µe3

0 µe1 χe2 µe3 −χe2
2 − µ(e2

1 + e2
3) + κ

R
e4

 ,

K33 = K>33 = e4


0 0 0 0 0
0 −µ 0 0 µe1

0 0 −µ 0 µe2

0 0 0 −χ χe3

0 µe1 µe2 χe3 −χe2
3 − µ(e2

1 + e2
2) + κ

R
e4

 ,
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K12 = K>21 = e4


0 0 0 0 0
0 0 −ξ 0 ξe2

0 −µ 0 0 µe1

0 0 0 0 0
0 µe2 ξe1 0 −(µ+ ξ)e1e2

 ,

K13 = K>31 = e4


0 0 0 0 0
0 0 0 −ξ ξe3

0 0 0 0 0
0 −µ 0 0 µe1

0 µe3 0 ξe1 −(µ+ ξ)e1e3

 ,

K23 = K>32 = e4


0 0 0 0 0
0 0 0 0 0
0 0 0 −ξ ξe3

0 0 −µ 0 µe2

0 0 µe3 ξe2 −(µ+ ξ)e2e3

 .

Since Kij = K>ji for i, j = 1, 2, 3, the matrix

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 ∈ R15×15,

is symmetric. Furthermore, K can be shown to be positive semi-definite [57, 31].
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B. Logarithmic average

Let a be a positive quantity of interest with two states aL and aR. The logarithmic mean
of aL and aR is defined as

â =
aL − aR

ln (aL)− ln (aR)
.

However, this is not numerically well-posed when aL and aR are nearly equal. The fol-
lowing stable algorithm to evaluate the logarithmic average has been given in [58].

Let ζ = aL/aR, so that

â =
aL + aR

ln (ζ)

(
ζ − 1

ζ + 1

)
,

where we use the series expansion of ln ζ

ln ζ = 2

(
1− ζ
1 + ζ

+
1

3

(1− ζ)3

(1 + ζ)3
+

1

5

(1− ζ)5

(1 + ζ)5
+

1

7

(1− ζ)7

(1 + ζ)7
+O(ζ9)

)
,

to obtain a numerically well-formed logarithmic mean as follows
eps = 1.0 e−2
z = a_L/a_R
f = (z−1)/(z+1)
u = f^2
if (u < eps )

F = 1 + u/3 + u^2/5 + u^3/7
else

F = log (z ) /2/f
logavg_a = ( a_L + a_R ) /2/F
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C. Numerical flux expression in three-
dimensions

Let n = (n1, n2, n3) ∈ R3. We describe below the three-dimensional expressions of several
key numerical fluxes for the Euler equations.

C.1 Central fluxes

The central fluxes are of the form F(Ul,Ur,n), where Ul, Ur are the left and right states
at the cell face at which the flux is being evaluated, while n corresponds to the normal to
the face. The fluxes are evaluated at an averaged state depending on Ul and Ur.

C.1.1 KEPEC

The kinetic energy and entropy conservative flux proposed in [16] is given by

F(Ul,Ur,n) =


F ρ

Fm1

Fm2

Fm3

F e

 =


ρ̂un

p̃n1 + u1F
ρ

p̃n2 + u2F
ρ

p̃n3 + u3F
ρ

F e

 , F e =

[
1

2(γ − 1)β̂
− 1

2
|u|2
]
F ρ + u · Fm,

where

Fm =
(
Fm1 , Fm2 , Fm3

)>
, un = u · n, p̃ =

ρ

2β
,

and ρ̂, β̂ are the logarithmic averages of the respective quantities.

C.1.2 ROE-EC

Roe [58] defined the parameter vector

Z> =
(
Z1 Z2 Z3 Z4 Z5

)
=

√
ρ

p

(
1 u1 u2 u3 p

)
,
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and proposed the following entropy conservative flux in terms of Z

F(Ul,Ur,n) =


F ρ

Fm1

Fm2

Fm3

F e

 =


ZnẐ5

Z5

Z1
n1 + Z2

Z1
F ρ

Z5

Z1
n2 + Z3

Z1
F ρ

Z5

Z1
n3 + Z4

Z1
F ρ

F e

 , F e =
1

2Z1

[
(γ + 1)

(γ − 1)

F ρ

Ẑ1

+
3∑

k=1

Zk+1F
mk

]
,

where
Zn = Z2n1 + Z3n2 + Z4n3.

The ROE-EC scheme is not kinetic energy preserving.

C.1.3 KEP

Jameson [59] proposed the following simple central flux

F(Ul,Ur,n) =


F ρ

Fm1

Fm2

Fm3

F e

 =


ρ un

pn1 + u1F
ρ

pn2 + u2F
ρ

pn3 + u3F
ρ

ρHun

 ,

which clearly satisfies the condition (5.9) and is thus kinetic energy preserving. However,
the flux is not entropy conservative.

C.2 Dissipation matrix used in entropy stable schemes

Let ñ be the unit normal corresponding to n. Then the Roe-type dissipation matrix is
given by

D(Ul,Ur,n) = RΛR>

where

R =


1 1 0 0 1

u1 − añ1 u1 ñ2 −ñ3 u1 + añ1

u2 − añ2 u2 −ñ1 0 u2 + añ2

u3 − añ3 u3 0 ñ1 u3 + añ3

H − auñ 1
2
|u|2 u1ñ2 − u2ñ1 u3ñ1 − u1ñ3 H + auñ

S
1
2 ,

S = diag
(
ρ

2γ
, (γ−1)ρ

γ
, p, p, ρ

2γ

)
,

Λ = ΛRoe = |n|diag
(
|uñ − a|, |uñ|, |uñ|, |uñ|, |uñ + a|

)
.

In the above expressions, S is the scaling matrix for the eigenvectors and uñ = u · ñ. The
following average states are used to evaluate the above matrices:

u = u, ρ = ρ̂, p =
ρ

2β
, a =

√
γ

2β̂
, H =

1

γ − 1
a2,
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which ensures that the KEPEC along with the Roe-type dissipation is able to resolve
stationary contact discontinuities exactly [16].

One can also construct the Rusanov-type dissipation matrix by choosing

Λ = ΛRus = |n|(|uñ|+ a)I,

where I is the identity matrix.

Remark C.2.1. A finite difference flux for the Euler equations formed using one of the
central fluxes described in Section C.1, and augmented with dissipation given in Section
C.2, has the expression

Fx
i+ 1

2
,j,k

= F(Ui,j,k,Ui+1,j,k, e1)− 1

2
D(Ui,j,k,Ui+1,j,k, e1)∆Vi+ 1

2
,j,k,

Fx
i− 1

2
,j,k

= F(Ui−1,j,k,Ui,j,k, e1)− 1

2
D(Ui−1,j,k,Ui,j,k, e1)∆Vi− 1

2
,j,k,

where e1 = (1, 0, 0)> is the unit vector along the positive x-direction. Note that we used
n = e1 in Fx

i− 1
2
,j,k

instead of n = −e1 since the direction of the face normals is already
accounted for in the formulation of the finite difference scheme. The remaining fluxes are
obtained in a similar manner as follows:

Fy

i,j+ 1
2
,k

= F(Ui,j,k,Ui,j+1,k, e2)− 1

2
D(Ui,j,k,Ui,j+1,k, e2)∆Vi,j+ 1

2
,k,

Fy

i,j− 1
2
,k

= F(Ui,j−1,k,Ui,j,k, e2)− 1

2
D(Ui,j−1,k,Ui,j,k, e2)∆Vi,j− 1

2
,k,

Fz
i,j,k+ 1

2
= F(Ui,j,k,Ui,j,k+1, e3)− 1

2
D(Ui,j,k,Ui,j,k+1, e3)∆Vi,j,k+ 1

2
,

Fz
i,j,k− 1

2
= F(Ui,j,k−1,Ui,j,k, e3)− 1

2
D(Ui,j,k−1,Ui,j,k, e3)∆Vi,j,k− 1

2
,

where e2 = (0, 1, 0)>, e3 = (0, 0, 1)>. To obtain high-order fluxes, the central flux is used
in tandem with the interpolation formula (5.14) in a dimension by dimension manner,
while high-order scaled entropy variable jumps replace the first order jumps.

Remark C.2.2. The expression for the central flux and dissipation matrices are also used
in the formulation of finite volume schemes discussed in Chapter 9. For finite volume
schemes the vector n corresponds the the outward normal to the control volume face, and
has a magnitude equal to the length of the face.
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D. GMRES method

The following GMRES algorithm has been taken from [67]. Consider the following system
of linear equations

Ax = b.

We assume that the matrix A ∈ Rm×m is invertible and |b| = 1. The n-th Krylov
subspace for this problem is given as

Kn = Kn(A,b) = span{b,Ab,A2b, . . . ,An−1b}.

GMRES approximates the exact solution of Ax = b, by the vector xn ∈ Kn that mini-
mizes the norm of the residual

|rn| = |Axn − b|.
We find an orthonormal basis v1,v2, . . . ,vn of Kn using the Arnoldi iteration

1. Define r0 = b and v1 = r0/|r0|, with the initial guess x0 = 0.

2. For i = 1, 2, ..., n− 1

vi+1 =
Avi −

∑i
j=1 〈Avi,vj〉vj

|Avi −
∑i

j=1 〈Avi,vj〉vj|
.

Thus, the vector xn can be written as xn = Wnyn for some yn ∈ Rn, where Wn ∈ Rm×n

is the matrix with the basis vectors of Kn as the columns. If denominator in the second
step of Algorithm arnoldi is zero for some index i, then the solution to Ax = b is in Ki (
see Lemma 3.4.1 in [67] ).

The Arnoldi process also produces an (n + 1) × n upper Hessenberg matrix Hn such
that

AWn = Wn+1Hn.

Setting β = |r0| and taking e1 = (1, 0, 0, ..., 0)> ∈ Rn+1, we get

|rn| = |b−Axn|2 = |Wn+1(βe1 −Hnyn)| = |βe1 −Hnyn|

as Wn+1 is orthogonal. Hence, xn can be determined by minimizing the Euclidean norm
of the residual rn, which is a linear least squares problem of size n.

The above process is repeated till the relative norm of the residue is below a threshold

|b−Axn|
|b| < ε.
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E. Cell averages of entropy variables and
positivity

For the two-dimensional Navier-Stokes equations, we wish to express the primitive vari-
ables P = (ρ, u1, u2, p)

> in terms of the entropy variables V = (V (1), V (2), V (3), V (4))>.
Clearly

u1 = −V
(2)

V (4)
, u2 = −V

(3)

V (4)
, θ =

p

ρR
= − 1

RV (4)
, β = −V

(4)

2

Furthermore,

ln

(
p

ργ

)
= s = −

(
β|u|2 + V (1)

)
(γ − 1) + γ

= −
(
−(V (2))2 + (V (3))2

2V (4)
+ V (1)

)
(γ − 1) + γ,

or
ργ

p
= exp

[(
−(V (2))2 + (V (3))2

2V (4)
+ V (1)

)
(γ − 1)− γ

]
= h(V).

The above relations give us

ρ =

(
h(V)

−V (4)

) 1
γ−1

, p = (h(V))
1

γ−1

( −1

V (4)

) γ
γ−1

.

Note that V (4) < 0 ensures that ρ and p are well-defined and positive, since h(V) > 0

and γ > 1. Thus, any average state V of the entropy variables for which V
(4)

< 0 will
ensure the positivity of the corresponding density and pressure. In particular, this holds
true for the average states VT and VTe defined in (10.13) and (10.14) respectively.
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